Utility Intelligence - Documentation 1/ 153

Uity Intelligence

A Peweriul Utility Al Framewerk

Online Documentation

Note: We don't update the offline version frequently because it's time-consuming. Therefore,
if possible, refer to the online version for the best experience. It's always up to date.

Welcome to the Documentation Hub

Hope you have a great experience with Utility Intelligence!

OQoDOOO

N . N Page 1
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/
https://bsky.app/profile/carlos-ai.bsky.social
https://bsky.app/profile/carlos-ai.bsky.social
https://x.com/_carlos_ai
https://x.com/_carlos_ai
https://www.youtube.com/@CarlosLab
https://www.youtube.com/@CarlosLab
https://links.carloslab-ai.com/RzqkVY
https://links.carloslab-ai.com/RzqkVY
https://discord.gg/vRFEK5uE3f
https://discord.gg/vRFEK5uE3f
mailto:contact@carloslab-ai.com
mailto:contact@carloslab-ai.com
https://utilityintelligence.carloslab-ai.com/Documentation/

Table of Contents

Documentation

Overview
« What is Utility Intelligence?
e How Utility Intelligence works
Getting Started
» Installation
e Quick Start
e Example Scenes
e Other Learning Resources
e Texts
e Videos
Example Scenes
e Importing example scenes

e Running examples in URP and HDRP
« URP

+ HDRP

Utility World

Utility World
Utility Entity
» Transforming GameObjects into Utility Entities
o Registering Utility Entities
o Getting Utility Entities
» Entity Lifecycle
Utility Agent

e Transforming GameObjects into Utility Agents

Utility Intelligence

Utility Intelligence
» Utility Intelligence Asset
» Utility Intelligence Data
Intelligence Editor
» Editor Mode

e Toolbar

Utility Intelligence: A Robust And Powerful Utility Al Framework

Utility Intelligence - Documentation 2 / 153

Page 2

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 3 / 153

» Runtime Mode
» Lock the Editor
e Tabs
» Intelligence Tab
» Decision Tab
e Target Filter Tab
» Consideration Tab
e Input Normalization Tab
e Input Tab
o Blackboard Tab

Decision Makers
» Understanding how the decision-making process works
o Creating Decision Makers

e Decision Maker Statuses

Decisions
e Understanding how decisions work
» Decisions are scored per target
o Oscillation between decision-target pairs
e Has No Target
o Decision Weight
¢ Momentum Bonus
e Creating Decisions
» Decision Statuses
Target Filters
o Creating Target Filters
» Adding Parameter Fields
o Supported Field Types
e Built-in Target Filters

Action Tasks

» Execution Modes

e Max Repeat Count

» Keep Running Until Finished

o Creating Action Tasks
» Adding Parameter Fields
o Supported Field Types

» Action Task Statuses

 Built-in Action Tasks

e Properties and Functions

N . N Page 3
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

e Properties

e Functions

Considerations
» Understanding how considerations work
o Compensation Factor
» Creating Considerations
» Consideration Statuses
e Response Curves
Inputs
e Creating Inputs
o Supported Value Types
* Adding Parameter Fields
o Supported Field Types
o Built-in Inputs
Input Normalizations
e Creating Input Normalizations
o Supported Value Types
o Adding Parameter Fields
e Supported Parameter Types
o Built-in Input Normalizations

Blackboard

e Creating Variables

e Supported Value Types
e Referencing Variables

e Built-in Variables

Tips & Tricks

Tips & Tricks
e General Tips & Tricks
e Ask Al ChatBots
o Use GitHub Copilot
e Other Tips & Tricks
Intelligence Editor
o Use Status Preview
e Lock the Intelligence Editor
e Group your components into categories

» Organize Fields in the IntelligenceEditor

Utility Intelligence: A Robust And Powerful Utility Al Framework

Utility Intelligence - Documentation 4 / 153

Page 4

https://utilityintelligence.carloslab-ai.com/Documentation/

Change class names and field names in JSON

Considerations

Common Consideration Recipes
« Distance
e [s(StateName)State

¢ [s(Not)InCooldown

¢ Random
¢ Health
e Idle

Which ResponseCurve should you use?

Decisions

Enable Compensation Factor

Enable KeepRunningUntilFinished

Use MomentumBonus

Add Fallback Decision

Use Decision Weight

Use empty TargetFilter list for Decisions that target all Entities

How Tos

How to enable/disable a decision based on a condition?
How to enable/disable decisions based on states

How to add some randomness to a decision?

How to reduce the oscillation of scores between decision-target pairs

Decision Makers

Character Transformation

Utility Worlds

Create separate worlds for different purposes

Optimization Tricks

Optimizing the decision-making process

o Adjust the decision-making interval

o Distribute the decision-making task across multiple frames
Create separate worlds for different purposes

Optimizing the score-calculation process

» Understanding how the process works

e How to optimize the process

Supported Types

e Supported Value Types

e Supported Field Types

Utility Intelligence: A Robust And Powerful Utility Al Framework

Utility Intelligence - Documentation 5/ 153

Page 5

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 6 / 153

Attributes

o JSON Attributes
e ClassFormerlySerializedAs
o FieldFormerlySerializedAs

» Field Attributes
o BoxGroup & FoldoutGroup
« Showlf & Hidelf

e Category Attribute

Categories
e (Category Attribute
e Category Field

Upgrade Guide
e General Upgrade Guide
e Upgrading from v1 to v2
« Intelligence Asset

e Source Code

Release Notes

Release Notes - v1
e 1.0.11
« 1.0.10
¢ 1.09
. 1.08
¢ 1.0.7
¢ 1.0.6
¢ 1.0.5
. 1.04
¢ 1.03
. 1.02
. 1.0.1
« 1.0.0

Release Notes - v2
. 226
. 224
¢ 223
. 222
o 2.2.1
. 220

N . N Page 6
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

FAQs

2.1.1
2.1.0
2.04
2.0.3
2.0.2
2.0.1
2.0.0

FAQs

Why use Utility Intelligence
Which Unity version is supported?
How to get support?

Why you should join our community on Discord

Why use Utility Intelligence?

High-quaility documentation

Utility Al is better than Behavior Trees and Finite State Machines
e Easytodebug

o Easy to maintain and scale

e Boost team productivity

e Higher Performance

An intuitive and powerful Editor

Many example scenes

Many built-in components

Many optimization tricks

Many oscillation reduction tricks

Special Thanks
o Third Party Notices

e Framework

o Example Scenes

Utility Intelligence: A Robust And Powerful Utility Al Framework

Utility Intelligence - Documentation 7 / 153

Page 7

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 8 / 153

Documenctation

N . N Page 8
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 9 / 153

Overview

What is Utility Intelligence?

Utility Intelligence is a robust and powerful Utility-Based Al Framework. It allows agents to make decisions
based on scores. Therefore, designers can adjust the decision-making process by tweaking the decision scores,
without needing support from developers to change the behavioral structure, as required in Behavior Trees
and Finite State Machines.

-> Designers and developers can work independently without affecting each other.

« Designers: Focus on adjusting the decision scores to ensure the best decision is chosen in any situation.

o Developers: Focus on creating and executing new decisions based on the game design document.

How Utility Intelligence works

Here's how Utility Intelligence works step by step:

1. Add decisions to the agent.

2. Score every decision based on the current situation.

3. Select the decision with the highest score.

4. Transition from the current decision to the selected decision.

5. Execute the action tasks of the selected decision sequentially or simultaneously.

N . N Page 9
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 10 / 153

()

The best decision for

(“, this situation

Continue
developing
and
maintaining
the package

at a faster
Continue pace.
developing

and
maintaining
the
package at
a slower

pace.

Lay off the
Behavior
team and
abandon

the
package.

0

N _ . Page 10
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Overview/best-decision-behavior.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Overview/best-decision-behavior.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 11 / 153

Getting Started

Installation

1. From Unity Hub, sign in to the Unity account that you used to purchase Utility Intelligence.

Unity Hub 3.9.0

S

Welcome to Unity Hub

Manage all your Unity projects and
editor installations in one app.

Sign in

New to Unity? Create account

Support

2. Open your Unity project.

3. Open the Package Manager.

. , . Page 11
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/signin-unityhub.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/signin-unityhub.png
https://utilityintelligence.carloslab-ai.com/Documentation/

@

=

In Project

@ Upi

Unity Registry
My Assets

Built-in

Filters

Q ch |

Project Window Help

Panels >
Next Window Ctrl+Tab
x1080) Previous Window Ctrl+Shift+Tab
Layouts >
Internal >

Unity Connect >
Unity Version Control

>
Search ription

Asset Store Limentati

My Assets

Package Manager

Text
TextMeshPro

General
Rendering
Animation
Audio

Sequencing

Analysis

Asset Management
Accessibility
Ul Toolkit
Visual Scripting

Utility Intelligence - Documentation 12 / 153

Utility Intelligence: A Robust And Powerful Ut... | L Downioad

2.0.4 - September 03, 2024

Utility Intelligence: A Robust And Powerful Utility Al Framework

Photon Voice 2

Third Person Controller - Basic Locomotion FREE

Starter Assets - ThirdPerson \ Updates in new CharacterController ..

Overview Releases Images

StamplT! Collection - FREE Examples & Supported Unity Versions 2023.2.3 or higher

Terrain Sample Asset Pack .01 Package Size 0.86 MB (Number of fi

UMeodeler X (Beta) 12,14 Purchased Date July

plines

Unity-Chan! Model

FishNet: Networking Evolved

Kinematic Character Controller

Basic Motions FREE " Utility Al, Behavior Tree
E|

FMOD for Unity

Mirror
MicroSplat
RiderFlow

Customizable

s - Remix Sound FX - FPS Microgame Add-On

Unity Learn | FPS Microgame | URP

| Environments 1

210f 120

Last updat

ns between
oothly from

ing by tweaking the de: n eeding support from

foral structure, and Finit;

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 12

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/open-package-manager.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/open-package-manager.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/download-utility-intelligence.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/download-utility-intelligence.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 13 / 153

5. Click on Import to Project

Manager

¥ Sort: Purcha date v Filters

In Project arch My Assets Utility Intelligence: A Robust And P... | ® import2.0.4 to project |~

@ Upda : . . 2.0.4 - August 31, 2024
Utility Intelligence: A Robust And Powerful Utility Al Framework

sy Photon Voice 2

My Assets Third Person Controller - Locomotion FREE

Overview Releases Images

Built-in Starter Assets - ThirdPerson \ Updates in new CharacterController ..
StamplT! Collection - FREE Examples . Supported Unity Versions
Services o
Terrain Sample Asset Pack .0/ Package Size

UModeler X (Beta) 1214 Purchased Date July 18, 2024

Dreamteck Splines
/) | Discussions
powerful-utility-

Unity-Chan! Model

FishNet: Networking Evolved
Kinematic Character Controller
B Motions FREE

FMOD for Unity

Mirror

A plat

RiderFlow
It
ble B - Remix Sound FX - FPS Microgame Add-On the current
Unity Learn | FPS Microgame | URP

Vi | Environments 1

210f 120

ndently without aff

Last update Sep 14, 07:59 scores to er

6. Enjoy exploring Utility Intelligence to develop your game Als.

Quick Start

1. Firstly, you need to create a Utility Intelligence Asset by right-clicking in the Project Window and select
Create/CarlosLab/Utility Intelligence Asset.

2. Then double-click on the new Utility Intelligence Asset to open the Utility Intelligence Editor.

N _ . Page 13
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/import-utility-intelligence.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/import-utility-intelligence.png
https://utilityintelligence.carloslab-ai.com/Documentation/

3. Add new Decision Makers, Decisions, Considerations to the intelligence asset.

@iility Intelligence
File 2

Intelligence Target Filters

Decision Maker

Compensation Factor DEaiione
Momentum B
Reorderable
Decision Makers
Reorderable

EvadeFromTarget None
Name Best Decision Score

MoveToEnemy None
Archer EvadeFromTarge 1.210 X -
ShootCurvedArrow None

Name Move atioNone
None
aticNone

None

Input Normalizations

Name Best Target

Inputs

Decision

Target Filters

Name
OtherTeamFilter
Considerations

Name Target

Utility Intelligence - Documentation 14 / 153

Input Normalization

Input
Value

Response Curve

1

None

Name None tRacNone

dd Actions

Input

0
Target

seTarget None

eedForever None

4. Transform your Al GameObjects into Utility Agents and assign the Utility Intelligence Asset to the
Intelligence Asset field of the Utility Agent Controller

Untagged yer Default

Overrides

Transform

Ed v Utility Agent Controller (Script)

Intelligence Asset & Warrior (Utility Intelligence
Open Editor

Ed v Character (Script)

Team Cyan

5. Transform all the Game Objects that your agents need to interact with into Utility Entities

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 14

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-agent.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-agent.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 15/ 153

@ Inspector

- z
’/,' v HealthStation

Tag Untagged ayer Default

Prefab
Select

Transform

v Utility Entity Controller (Script)

v Charge Station (Script)

Type Health Station
Charge Radius 2

Charge Per Sec y

Add Component

6. Create a Utility World and register all the Utility Agents and Utility Entities in your game with it.

) Inspector

." v UtilityWorld
v
Tag Untagged

Transform

v Utility World Controller

Decision Making Interval 0.1
Enable Decision Making B

Decision Making Batch Si: 40

Add Component

7. Play your game.

Example Scenes

N , . Page 15
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-entity.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-entity.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-world.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-world.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 16 / 153

For more information about the example scenes of this package, please visit: Example Scenes.

Other Learning Resources

Besides our documentation, there are other good learning resoures for Utility Al. You can learn a lot from them.

Texts

1. An Introduction to Utility Theory, David “Rez” Graham
2. Choosing Effective Utility-Based Considerations, Mike Lewis

3. Curvature's Wiki, Mike Lewis

Videos

1. Architecture Tricks: Managing Behaviors in Time, Space, and Depth, Dave Mark (From 33:30)

2. Building a Better Centaur: Al at Massive Scale, Dave Mark and Mike Lewis

N , . Page 16
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://www.gameaipro.com/GameAIPro/GameAIPro_Chapter09_An_Introduction_to_Utility_Theory.pdf
https://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter13_Choosing_Effective_Utility-Based_Considerations.pdf
https://github.com/apoch/curvature/wiki
https://www.gdcvault.com/play/1018040/Architecture-Tricks-Managing-Behaviors-in
https://www.gdcvault.com/play/1021848/Building-a-Better-Centaur-AI
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 17 / 153

Example Scenes

We provide many example scenes to demonstrate how to use Utility Intelligence to create your own agents.
However, by default, these examples are not imported into your project to keep it clean. If you want to learn more
about Utility Intelligence through our examples, you need to import them into your project first.

Utility Intelligence: Example Scenes (v2) | Utility Al Framework for Unity Gam...

Importing example scenes
To import our example scenes to your project:

1. Open the Package Manager.
2. Select In Project -> Carlos Lab - Utility Intelligence.

3. Go to the Samples tab.

N _ . Page 17
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://www.youtube.com/watch?v=dHXrdIGhrPM
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 18 / 153

4. Click the Import button.

B In Project =Y SR [A CarlosLab - Utility Intelligence Remove

© Updates
Packages - Asset Store
1 Unity Reg Asset Store Publishing Tools
g com.carloslab. utilityintelligence
y Assets Asset Usage Detector

& Built-in Packages - Carlos

Criteslal = EsmiEn Description ~ Version History Dependencies Samples

& Services -
CarlosLab - Utility Intelligence
Examples 13] Import

Packages - Other

monstrates how to create agents using Utility
Asset Store Tools
Packages - Unity

Al Navigation

Profile Analyzer
& Settings Manager
Test Framework

Timeline
Unity Ul
Version Contro

Visual Scripting

Last update Jul 23,

Running examples in URP and HDRP

Since this plugin doesn’t have any graphical features, it is compatible with all render pipelines. However the
materials of the examples are created using the Built-In Render Pipeline. Therefore, if you want to run the
examples in URP or HDRP, you need to convert all materials to the target pipeline first:

URP

1. Open Render Pipeline Converter (Window -> Rendering -> Render Pipeline Converter).
2. Tick Material Upgrade.

3. Click Initialize and Converter button.
Or

1. Select all materials in our examples.

2. Click Edit -> Rendering -> Material -> Convert Selected Built-in Materials to URP.

HDRP

1. Open HDRP Wizard (Window -> Rendering -> HDRP Wizard).

2. Click Convert All Built-In Materials to HDRP.

Or

N _ . Page 18
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/import-examples.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/import-examples.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 19/ 153

1. Select all materials in our examples.

2. Click Edit -> Rendering -> Material -> Convert Selected Built-in Materials to HDRP.

N _ . Page 19
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 20 / 153

Utility World

N , . Page 20
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 21/ 153

Utility World

A Utility World contains a collection of Utility Entities, and
the main roles of a Utility World are:

1. Handling the decision-making process of all Utility Agents inside the world.

2. Running the task associated with the chosen decision for all Utility Agents inside the world.

o Note

o Utility Worlds manage their Utility Entities and Utility Agents independently, not related to each other.

¢ So you can create multiple utility worlds for different purposes without having to worry about they will affect
each other.

To create a Utility World, right-click in the Hierarchy Window, then select CarlosLab/Utility World. Alternatively,
you can create it manually by creating a new Game Object and adding a Utility World Controller component to it:

) Inspector

’ aps
." v UtilityWorld

Tag Untagged Layer Default

Transform

v Utility World Controller

Decision Making Interval 0.1
Enable Decision Making B

Decision Making Batch Si: 40

Add Component

The Utility World Controller will automatically create a Utility World when your game starts and manage it
throughout its lifetime.

d Tip

You can optimize the decision-making process of each Utility World by adjusting the Decision Making Interval and
the Decision Making Batch Size.

Page 21

Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-world.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-world.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 22 / 153

Utility Entity

A Utility Entity represents an object inside a Utility World, and only Utility Entities in the same world can interact
with each other. Therefore, if you want a GameObject to be the target of a Utility Agent, you need to do the

following:

1. Transform the GameObiject into a Utility Entity
2. Register the Utility Entity with the same Utility World as the Utility Agent.

Transforming GameObjects into Utility Entities

To transform a GameObject into a Utility Entity, you need to attach these two components to it:

1. Utility Entity Facade

o Itis used to interact with the Utility Entity’'s Game Object. For example, Target Filters can access the
Entity Facade of both itself and the target to retrieve information from the components of Game Objects

in order to check the validity of the target.

public class OtherTeamFilter : TargetFilter
{

protected override bool OnFilterTarget(UtilityEntity target)
{
if (target.EntityFacade is Character targetCharacter)
{
Character myCharacter = AgentFacade as Character;
return myCharacter.Team != targetCharacter.Team;
}
return false;
}
}

o To create your own Entity Facade, you need to create a class inherited from utilityEntityFacade . For

example:

y , . Page 22
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 23 / 153

public class ChargeStation : UtilityEntityFacade
{

[SerializeField]
private ChargeStationType type;

[SerializeField]
private float chargeRadius;

[SerializeField]
private float chargePerSec;

public ChargeStationType Type => type;
public float ChargeRadius => chargeRadius;
public float ChargePerSec => chargePerSec;

2. Utility Entity Controller
o The main role of a Utility Entity Controller is to create and manage the Utility Entity’s lifecycle, including
initialization, destruction, registration, and unregistration with utility worlds.

@ Inspector

- 2
’/4" v HealthStation

T Untagged

Prefab

Transform

&

v Utility Entity Controller (Script)

E v Charge Station (Script)

Type Health Station

Charge Radius 2

arge Per Sec 2

Add Component

Registering Utility Entities

N , . Page 23
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-entity.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-entity.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 24 / 153

@ Note

o A Utility Entity can only be associated with a single Utility World.
o Therefore, it's not possible to register a Utility Entity with multiple Utility Worlds.

To register a Utility Entity with a Utility World, you need to call the Rregister method of the
UtilityEntityController and pass the Utility World as the parameter. For example:

public class AgentsPlacedInSceneDemo : MonoBehaviour

{
[SerializeField]
private UtilityWorldController world;

[SerializeField]
private List<UtilityAgentController> agents;

[SerializeField]
private List<UtilityEntityController> chargeStations;

private void Start()

{
foreach (UtilityAgentController agent in agents)

{

agent.Register(world);

}

foreach (UtilityEntityController chargeStation in chargeStations)
{

chargeStation.Register(world);

Getting Utility Entities

After being registered with a Utility World, the Utility Entity is allocated an Entity Id. This Id is unique within the
world, and you can get the entity from the world by calling utilityWorldController.GetEntity() and passing the
Entity Id as the parameter of the method. For example:

int entityId = entity.Id;
var entity = world.GetEntity(entityId);

It's useful in case you want to access the entity from multiple places but don’t want to pass the entity object

everywhere.

Entity Lifecycle

y , . Page 24
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 25/ 153

Inv2.2.1, | added these lifecycle event functions to EntityFacade . You can override these functions to receive
notifications when lifecycle events occur.

protected virtual void OnRegistered()
{
}

protected virtual void OnActivated()
{
}

protected virtual void OnEnabled()
{
}

protected virtual void OnDisabled()
{
}

protected virtual void OnDeactivated()
{
}

protected virtual void OnUnregistered()
{
}

protected virtual void OnDestroyed()
{
}

Additionally, v2.2.1 includes a new example to demonstrate the lifecycle of utility entities:

Page 25

Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 26 / 153

New Example: Entity Lifecycle (v2.2.1) | Utility Al Framework for Unity GameO...

Since utility entities are managed by a utility world, performing the following actions within action tasks is unsafe
because they directly affect the utility world, which is also responsible for running action tasks:

o Register/Unregister utility entities.

o Activate/Deactivate utility entities.

e Enable/Disable utility entities.

o Destroy utility entities.

For safety, you should use these functions inside action tasks instead. They will be queued to run after all action
tasks have executed.

* EntityController.Register()

e EntityController.Unregister()

e EntityController.SetActive()

e EntityController.Activate()

e EntityController.Deactivate()

e EntityController.SetEnable()

e EntityController.Enable()

* EntityController.Disable()

e EntityController.Destroy()

Or:

N _ . Page 26
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://www.youtube.com/watch?v=faTVsr9hZDU
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 27 / 153

e EntityFacade.Register()

e EntityFacade.Unregister()
e EntityFacade.SetActive()
e EntityFacade.Activate()

e EntityFacade.Deactivate()
e EntityFacade.SetEnable()
e EntityFacade.Enable()

e EntityFacade.Disable()

e EntityFacade.Destroy()

f it is outside of action tasks, you can use these functions instead. They will be run immediately without queueing.

e EntityController.RegisterImmediate()

e EntityController.UnregisterImmediate()
e EntityController.SetEnableImmediate()
e EntityController.EnableImmediate()

e EntityController.DisableImmediate()

e EntityFacade.RegisterImmediate()

e EntityFacade.UnregisterImmediate()
e EntityFacade.SetEnableImmediate()
e EntityFacade.EnableImmediate()

e EntityFacade.DisableImmediate()
And:

® (GameObject.SetActive

e GameObject.Destroy

N , . Page 27
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 28 / 153

Utility Agent

A Utility Agent is a special Utility Entity that helps your Al make the right decision based on the current situation,
and controls it to perform the Action Tasks attached to the chosen decision.

Transforming GameObjects into Utility Agents

To transform a Game Object into a Utility Agent, you need to attach these two components to it:

1. Utility Agent Facade

« Itis similar to Utility Entity Facade but instead of interact with the GameObject of the Utility Entity, it is
used to interact with the Game Object of the Utility Agent.

o To create your own Utility Agent Facade, you need to create a class inherited from utilityAgentFacade . For
example:

public class Character : UtilityAgentFacade

{
[SerializeField]
private Team team;

private CharacterEnergy energy;
private CharacterHealth health;
private NavMeshAgent navMeshAgent;
private Rigidbody rigidBody;

public Team Team => team;

public NavMeshAgent NavMeshAgent => navMeshAgent;
public Rigidbody RigidBody => rigidBody;

public CharacterHealth Health => health;

public CharacterEnergy Energy => energy;

private voild Awake()

{
navMeshAgent = GetComponent<NavMeshAgent>();
rigidBody = GetComponent<Rigidbody>();

health = GetComponent<CharacterHealth>();
energy = GetComponent<CharacterEnergy>();

2. Utility Agent Controller

« |tis similar to Utility Entity Controller, but instead of create and manage the lifecycle of the Utility
Entity, it creates and manage the lifecycle of the Utility Agent.

o Itinjects Utility Intelligence Data from the Utility Intelligence Asset into Utility Agent, giving the agent
intelligence.

N , . Page 28
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 29 / 153

) Inspector
-
%
Default

Overrides

Transform

ion

Ed v Utility Agent Controller (Script)
Intelligence Asset & Warrior (Utility Intelligence Asset)

Open Editor

Ed v Character (Script)

Team Cyan

N , . Page 29
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-agent.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-agent.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 30 / 153

Utility Intelligence

N , . Page 30
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 31/ 153

Utility Intelligence

Utility Intelligence is an object that uses Utility Intelligence Data to help Utility Agents make and execute
decisions. It grants intelligence to Utility Agents.

Utility Intelligence Asset

Utility Intelligence Asset is a data container used to store Utility Intelligence Data. It can be created by right-
clicking in the Project Window and select Create/CarlosLab/Utility Intelligence Asset.

Utility Intelligence Data
Utility Intelligence Data is stored in JSON format. It includes information about:

e Decision Makers

e Decisions

Target Filters

e Considerations
There are two ways to edit Utility Intelligence Data:

1. Manually Editing: Use a text editor to edit the data, and then import it into Utility Intelligence Asset using
File Toolbar Menu.

2. Utility Intelligence Editor: Use the Utility Intelligence Editor to edit the data. This is the recommended way.

N , N Page 31
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 32 / 153

Intelligence Editor

Editor Mode

There are three ways to open the Utility Intelligence Editor for a Utility Intelligence Asset at editor time (Editor

Mode):

1. Double-click the Utility Intelligence Asset in the Project Window.
2. Select the Utility Agent with the assigned Utility Intelligence Asset in the Hierarchy Window, and then click
the Open Editor button in the Inspector Window.

Archer

Untagged Layer Default

Overrides Select

Transform

tation
L |
v Utility Agent Controller
Intelligence Asset & Archer (Utility Intelligence Asset)

Open Editor

3. Select Tools -> Carlos Lab -> Utility Intelligence -> Utility Intelligence Editor, and then select the Utility
Intelligence Asset in the Project Window.

Tools Window Help
Carloslab > Utility Intelligence > Utility Intelligence Editor

@ Inspector Welcome Screen

Here's how the Utility Intelligence Editor looks in Editor Mode:

N , N Page 32
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/open-editor-window-inspector.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/open-editor-window-inspector.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/open-editor-window-tools.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/open-editor-window-tools.png
https://utilityintelligence.carloslab-ai.com/Documentation/

@ Rese:

File

chutilitylntelligenc

@iility Intelligence

File v

Intelligence Decisions

Compensation Factor

Momentum B:

Edit Assets GameObject Component Services Visual Scripting Asset Store Tools

Tests

Project Publish Tools

Target Filters

Decision Maker

Decisions

Input Normalizations

Decision

Target Filters

Utility Intelligence - Documentation 33 / 153

P Inspector

;,f‘ v Archer
-
Tag Untagged

Overrides

Transform

Default

Select Open
o i i
o 2

Data Version: 2 Framework Version: 1.1.0

Consideration

Input

Reorderable
Decision Makers
Name est Ta... Othe nFilte! Value
Reorderable
Considerations
Name Best De.. Sc 2 :
VioveToEnemy None X N Response Curve
EvadeFrom1 1 % Name Target Score
ShootCurve: C

None

yStNone

None
Actions
None

Input

Name 0

Taraet

Toolbar
Currently, Unity only supports toolbar in Editor Mode, so you won’t see it if you open it in Runtime Mode.
File Menu

e Import Data:Import the Intelligence Data from a JSON file.
e Export Data:Export the Intelligence Data to a JSON file.

e Show Data: Show the Intelligence Data in JSON format.

e (lear Data: Clear all the Intelligence Data.

With the File Menu Toolbar, you can edit the Intelligence Data directly in JSON format using your Text Editor,
then importitinto the Intelligence Asset:

N , . Page 33
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-editor_editor-mode.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-editor_editor-mode.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 34 / 153

Features: JSON Editing (v2)

Runtime Mode

One robust feature Utility Intelligence offers is that the Utility Intelligence Editor can function both during
editor time and at runtime in builds. This feature enables users to adjust variables in the Utility Intelligence

Editor to observe how they affect the agent’s decisions for testing purposes in builds.
To open the Utility Intelligence Editor for a Utility Agent at runtime in builds (Runtime Mode):

1. Create a Utility Intelligence Runtime Editor by right-clicking in the Hierarchy Window, then select
CarlosLab/Utility Intelligence Runtime Editor. Alternatively, you can create it manually by creating a new

Game Object and adding these components to it.

N _ N Page 34
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=J2xQq7ekfT0
https://utilityintelligence.carloslab-ai.com/Documentation/

@ Inspector

@ v UtilityIntelligenceRuntimeEditor

Tag Untagged ayer Default

Transform

nelSettings (Pane
® None (Visual Tree A

Sort Order 0

v Utility Intelligence Runtime Editor (Script)
Hide Key

Add Component

Utility Intelligence - Documentation 35/ 153

2. Add a Utility Intelligence Runtime Editor Presenter to the Utility Agent, assign the Utility Intelligence

Runtime Editor to the Editor field, and set the Show Key to show the editor when the key is pressed.

E® v Utility Intelligence Runtime Editor Presenter

(7]

Editor & UtilityIntelligenceRuntimeEditor (Utility Intel ©®

Show Key A

Here's how the Utility Intelligence Editor looks in Runtime Mode:

Utility Intelligence: A Robust And Powerful Utility Al Framework

A

Page 35

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-runtime-editor.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-runtime-editor.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-runtime-editor-presenter.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-runtime-editor-presenter.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 36 / 153

@ ResearchUtilitylntelligence_2023.2.3f1 - Runtime Editor - Windows, Mac, Linux - Unity 2023.2.3f1 <DX11> - (=] X
File Edit Assets GameObject Component Services Visual Scripting Asset Store Tools Tests Project Publish Tools Window Help

Considerations Input Normalizations Inputs

Archer

Momentum Bonus 1 Reorderable D Target Filters
NoT

Reorderable Name
D EvadeFrom Swordsman 1100

Swordsman

MoveToHee HealthStation 0.000 Name Target Sc...
Name

ChargeHeal HealthStation 0.000 IsNotBeingA Swordsman 0.000
Swordsman

MoveToEne EnergyStatior 0.000 IsEnoughEne Swordsman 0.000

ChargeEner EnergyStatior 0.000 IsNotinAttac Swords| 0 1

Create

Idle Archer 0.000 IsTargetinAtt Swordsman ~ 0.000

Keep Runr ed [

Feature: Runtime Editor (v2)

Lock the Editor

N _ . Page 36
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-editor_runtime-mode.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-editor_runtime-mode.png
https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=C6oSn0DkdXg
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 37 / 153

We have received feedback that the ability to lock the Intelligence Editor is important for testing purposes. It
allows users to modify variables from other Game Objects through the Inspector Window and see how they

affect the decision scores in the Intelligence Editor. After considering, we decided to add this feature in v2.2.0.
We believe you will like this feature.

New Feature: Lock Button (v2.2.0) | Utility Al Framework for Unity GameObijec...

Tabs

Intelligence Tab

In Intelligence Tab, you can create new decision makers and add Decisions created in Decision Tab to your
decision makers.

N _ . Page 37
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=1K_44LZNuak
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 38 / 153

B Utility Intelligence

File v

telligence

Intelligence decisions Target Filters € tions Input Normalizations Inputs

Decision Maker Decision onsideration

Compensatic actor . ;
ompensation Factor Decisions Input Normalization
Momentum Bonus 5 Target Filters
Reorderable
Decision Makers
Best Target
Reorderable Name
et None X e P
Name Best Decision OtherTeamFilter
eToEnemy None
Archer EvadeFromTarge 1 X Considerations
ShootCurvedArrow None X

Input

atit € Name Target e Value
Name atioNone

None
Response Curve

ergyStaticNone

None

None

Name None

Input
(o]
Target
None

UpdateSpeedForever None

Status Preview

Besides that, you can preview the status of multiple components for any changes, such as inputs, and response
curves, right in the Editor without having to play your game. For example:

e The score and status of each consideration, indicating which considerations are executed and discarded.

o The score and status of each decision, indicating which decision is chosen based on the current inputs, input
normalizations, and response curves.

| believe this feature will save a lot of your time while designing Als for your games.

N , . Page 38
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 39 / 153

Feature: Status Preview (v2)

Runtime Status

Additionally, you can view the current status of multiple components during runtime. It is similar to Status
Preview but includes additional runtime information, such as the best target for each decision, and the current

status of considerations and action tasks.

Feature: Runtime Status (v2)

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 39

https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=N2QVn5GaklA
https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=yzXQNdYbXCk
https://utilityintelligence.carloslab-ai.com/Documentation/

Runtime Editing

Utility Intelligence - Documentation 40 / 153

Furthermore, you can tweak your Al behaviors during runtime for testing purposes without having to replay

your game.

Feature: Runtime Editing (v2)

Decision Tab

In Decision Tab, you can create new Decisions and add target filters, action tasks, Considerations to your

decisions.

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 40

https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=awmbjOUqi-k
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 41/ 153

O

Data Version: 2 Framework Version: 1.1.0

Decisions i 5 at Input No

Inputs

Decisions Consideration

Reorderable

Name Weight Input Normalization
MoveToHealthStation Target Filters
ChargeHealth b4 Has No

- oy Qtatic Enable he Per Target

MoveToEnergyStation ; b Input
Reorderable

MoveToEnemy Nan peorderable Value Normal

ShootCurvedArrow OtherTeamFilter x Response Curve

EvadeFromTa

Idle

Name
Actions
Keep Running Until Fini
Max Repeat Count

Input
Reorderable 0

>tBool
StartCooldown
StartRangedAttack
WaitUntilAnimationFinished

SetBool
Sequence

Type

Target Filter Tab

In Target Filter Tab, you can create new target filters to filter targets for each decision:

Page 41

Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/decision-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/decision-tab.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 42 / 153

B Utility Intelligence
tility Intelligence

File v

Target Filters (3 5 Input Norm

TargetFilters ChargeStationFilter

Reorderable

Name Type HealthStation
HealthStationFilter
EnergyStationFilter

OtherTeamFilter

ChargeStationFilter
ArcheryTargetFilter
OtherTeamFilter
AgentFilter
OtherfFilter

Consideration Tab

In Consideration Tab, you can create new considerations and select input normalizations and response curves for
your considerations. Besides that, you can adjust the input values and response curves to observe how they
affect the consideration scores:

Feature: Intuitive Consideration Editor

y , . Page 42
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/target-filter-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/target-filter-tab.png
https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=Krv0C2H9dcw
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 43 / 153

Input Normalization Tab

In Input Normalization Tab, you can create new input normalizations and select inputs for your input
normalizations.

R Utility Intelligence
tility Intelligence

File v

Int 2) ons arget Filters tic Input Normalizations Inputs

Input Normalizations DivideByMaxValueMormalizationint
Reorderable

Name Has No Targe

MyHealth Enable he Per Target
MyEnergy 100
IsEnoughEnergy

IsIinAttac Input

IsBeingAtta Name MyHealth

~ . Value)
IsinChargeRadius 0
rgetinAttackRar

IsTargetNotinAttackRange

Basic

Comparison

Division

Examples

Range InRangeNormalizationFloat

Float InRangeNormalizationInt
IsinRangeNormalizationFloat

IsinRangeNormalizationInt

Input Tab

In Input Tab, you can add new inputs to the intelligence assets.

N , . Page 43
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-normalization-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-normalization-tab.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Y Utility Intelligence
tility Intelligence
File v

Intelligence Decisions Target Filters

Inputs

Reorderable

Name

MyHealth 0
MyEnergy 0
MyState Normal
AttackCooldownElapsedTime 0
MyDistanceToTarget 0

Name

Type

Utility Intelligence - Documentation 44 / 153

>onsiderations Input Normalizations

Healthinput

Has No Target
Enable Cache Per Target

InputSource Self

Examples CharacterStatelnput

Bool Energylnput

Float HealthInput

d Tip

You can adjust the input values in the editor to observe how these changes affect the statuses of considerations and

decisions. For further details, read Status Preview

For example, if you set the input values in the intelligence asset: MeleeAttackWithoutForce (in our examples) as

follows:

B Utility Intelligence
tility Intelligence
File '
Intelligence Decisions Target Filters
Inputs
Reorderable
Name
MyHealth
MyEnergy

MyState
MyDistanceToTarget

Name

Type

O X
Data Version: 2 Framework Version: 1.1.0

Considerations Input Normalizations Inputs Blackboard
Healthinput

Has No Target
Enable Cache Per Target

InputSource Self

Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab_modify-inputs.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab_modify-inputs.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 45 / 153

Then you will notice that the decision: MoveToEnemy is selected in the Intelligence Tab. This means you can
determine which decision will be chosen based on the current input values without needing to play your game.
Therefore, you will have more time to design your Als.

o
kility Intelligence
File v Data Version: 2 Framework Version: 1.1.0

Intelligence Decisions Target Filters Considerations

Decision Maker Decision

Compensation Factor Decisions Input Normalization
Momentum Bonus 5 Target Filters
Reorderable
Decision Makers
Name Best Ta... Score
Re: able Name
None 0.747 X .
Name Best Decisi OtherTeamFilter (e
Warrior MoveToEnemy 0. X - ~ Actions
StatiNone 0.000 X =
» _ Value Normal
— None 0.000
0.000
None 0.000

None 0.100

Target Response Curve
rget None
peedForever None
Name None
Add

Considerations

Name Target Score

IsNotBeingAttackedNone 1.000 Input
[o]

MyHealt None 0.990
None 0.968

None 1.000

tinAttackNone 1.000

ghtRadiusNone 0.708

Edit

Blackboard Tab

In Blackboard Tab, you can add variables to share information between multiple components within the agent,
such as inputs, input normalizations target filters, and action tasks.

N , . Page 45
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab_modify-inputs.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab_modify-inputs.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 46 / 153

Feature: Blackboard Variables (v2)

d Tip

If some of your blackboard variables are used by one of the inputs or input normalizations, then changing the values
of those variables will also affect the statuses of considerations and decisions, just like input values.

Continuing with the example from Input Tab, if you change the sight radius to 15 (the original value is 40):

N , . Page 46
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=QNKIatsxPQQ
https://utilityintelligence.carloslab-ai.com/Documentation/

B Utility Intelligence
@ity Intelligence
File ~

Intelligence Decisions

Blackboard

Reorderable

Name
Animator
NavMeshAgent
SightRadius
WalkingSpeed
AttackRange
SpeedParamMName
AttackNumber
AttackNumberParamName

AttackAnimationName

Name

Type

T

arget Filters Cons

15

2.5

&

Speed

0]
AttackNumber

Utility Intelligence - Documentation 47 / 153

O X
Data Version: 2 Framework Version: 1.1.0
erations

Input Normalizations Inputs Blackboarc

X X X X X X X X X

Then in the Intelligence Tab, the selected decision will change from MoveToEnemy to Idle because the enemy is
out of the agent's sight:

B Utility Intelligence
@ity Intelligence
File v

Intelligence

Intelligence

Compensation Factor
Momentum Bonus
Decision Makers

Reorderable

Name Best Decisi

Target Filters

Decision Maker

Decisions
Reorderable
Name Best Target

MoveToEnemyNone

Warrior Idle

AttackEnemy None

Name

MoveToHealthNone
ChargeHealth None
MoveToEnergyNone

ChargeEnergy None

Input Normalizations

Decision

o X

Data Version: 2 Framework Version: 1.1.0

Inputs

Consideration

Input Normalization

Target Filters

Score
0.000
0.000
0.000
0.000
0.000
0.000

Actions

Type
Idle

Idle None

0110 Name

Name

Idle

Target Response Curve

None

Considerations

Target

None

Edit

Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/blackboard-tab_sight-radius.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/blackboard-tab_sight-radius.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab_sight-radius.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab_sight-radius.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 48 / 153

Decision Makers

In Utility Intelligence, a decision maker contains a list of decisions, and the responsibility of each decision maker
is to select the best decision from them based on the current situation. Additionally, each utility agent can contain
multiple decision makers.

Decision Maker

Consideration Consideration Consideration Consideration
(Axis) (Axis) (Axis) (Axis)

Decision Maker

Consideration Consideration Consideration Consideration
(Axis) (Axis) (Axis) (Axis)

Understanding how the decision-making process works

Here's how the decision-making process of a utility agent works:

1. For each decision maker, the utility agent calculates the scores of all attached decisions and selects the best
decision.

2. Afterwards, the utiltiy agent compares the scores of the best decisions from each decision maker with each
other, and the winner is the decision with the highest score.

Creating Decision Makers

N _ . Page 48
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/DecisionMakers/decision-maker.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/DecisionMakers/decision-maker.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 49 / 153

To create a decision maker, you need to go to the Intelligence Tab, fill in the Name Field, and then click the Create
button:

& Utility Intelligence

@ity Intelligence

File v

Intelligence

Intelligence Decision Maker

Compensation Factor e

Momentum Bonus
Reorderable
Decision Makers

SR e Name Best Target Score
oraerd =

MoveToEnemy None 0.000

AttackEnemy None 0.000

Name

MoveToHealth¢None 0.000
ChargeHealth None

MoveToEnergy:None 0.000
ChargeEnergy None 0.000

Idle None 0.000

Name

After creating a decision maker, you can add Decisions to it and monitor which decision will be chosen as the best
one based on the current situation.

Decision Maker Statuses
At runtime, decision makers have 4 statuses:

:Running

R
:Inactive

At editor time, decision makers have 2 statuses:

Page 49

Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/DecisionMakers/create-decision-maker.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/DecisionMakers/create-decision-maker.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 50 / 153

: Selected

: Unselected

N _ . Page 50
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 51/ 153

Decisions

In Utility Intelligence, each decision has:

o Alist of Target Filters: They are used to Ffilter targets for the decision.
» Alist of Considerations: They are used to calculate the score of the decision.

o Alist of Action Tasks: They will be executed by the egent if the decision is chosen.

Understanding how decisions work

Since a decision is scored per target, and any Utility Entity (all GameObjects with utilityEntityController OF
UtilityAgentController attached) in the Utility World could be a target of the decision, we need a way to filter
targets to ensure that only appropriate targets are considered. This is the job of Target Filters.

After finding appropriate targets, all Considerations of the decision will be evaluated for each target to calculate
the score of each decision-target pair. Then the score of each pair is multiplied with the Decision weight to get the
final score.

Finally, the best decision-target pair with the highest score will be chosen and the agent will execute all Action
Tasks attached to the decision, either in Sequence or in Parallel.

Decisions are scored per target
A decision may or may not have targets. However:

1. Ifit has targets, it will be scored per target. Afterward, Utility Intelligence will compare the scores of all the
decision-target pairs with each other and select the pair with the highest score.

2.If it does not have targets, it will be scored only once, and that score is the final score of the decision.

N , N Page 51
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 52 / 153

4)

Enemy 1
(0.86)

The decision-target pair
with the highest score
will be chosen

Location A
(0.95)

Move Towards

Move Towards Location A

(0.95)

J11

. J

Oscillation between decision-target pairs

When using Utility Al, there may be a scenario where decision-target pairs with similar scores oscillate back and
forth as their scores rise and fall. This leads to the agent constantly changing its decision and target. Currently,
there are four ways to address this issue:

1. Enable the Momentum Bonus option to add a bonus to the last chosen decision-target pair in the next
decision-making round.
« This will prioritize the last decision-target pair over the others, thereby eliminating the oscillation.

2. Increase the weight of the decision that you want to prioritize. For example, let’s say 2 or 3 instead of just 1.
« This will prioritize one decision over the others, reducing the oscillation.

3. Enable Keep Running Until Finished option to prevent the agent from making a new decision while an
important task is running.

« When the agent is performing an important task, such as AttackPlayer, ChargeHealth,
ReloadAmmunition, and you don’t want it to be interrupted, you can enable this option to prevent the

N , N Page 52
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/decisions-per-target.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/decisions-per-target.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 53 / 153

agent from switching to another decision while that task is running.
4. Add more considerations to each decision.

o This will introduce more variation to the score-calculation process, increasing the chances that the
competing decision will consistently win (or lose) and thereby reducing the oscillation.

Has No Target

A decision may or may not have targets. You can specify whether it has targets or not by checking/unchecking the
HasNoTarget toggle in the Decision Tab:

&Y Utility Intelligence
@ity Intelligence

File v

Int = Decisions arget Filters C Input No

Decisions Decision
Reorderable
Name

MoveToHealthStation
ChargeHealth Enable C e Per Target
MoveToEnergyStation Target Filters
ChargeEnergy Reorderable
MoveToEnemy Name

ShootCurvedArrow HealthStationFilter

EvadeFromTarget

Idle . NEnE

« If the HasNoTarget toggle is checked:

o The target filter list will be hidden because it is no longer necessary.

o The decision will be considered as having no target, and will be scored only once without targets.
o If the HasNoTarget toggle is unchecked:

o If the target filter list is empty:

o All utility entities in the same utility world will be considered as targets for the decision, and the decision
will be scored per target.

o |Ifthe target filter list is not empty:
o If the filtered targets > 0, the decision will be scored per target.

o Ifthe filtered targets = 0, the decision score will be 0

Decision Weight

N , . Page 53
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/has-no-target.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/has-no-target.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 54 / 153

In Utility Intelligence, you can control the prioritization of each decision by adjusting its Decision Weight.
For example, you can organize your decisions into multiple layers like the following:

o Normal Layer’'s Weight: 1.0
o Combat Layer’'s Weight: 2.0

o Urgent Layer's Weight: 3.0

The decision weight will then be multiplied by the decision score to get the final decision score:

4)

Decision Final Decision

Score Score

N\ J

You can change the weight of a decision in the Decision Tab:

7 Utility Intelligence

tility Intelligence

File v
Inte > Decisions arget Filters C S Input Norma
Decisions Decision
Reorderable
NElE Weight

MoveToHealthStation Target Filters

ChargeHealth x Has No Target

MoveToEnergyStation X Enable Cache Per Target
ChargeEnergy X Reorderable
MoveToEnemy Name

AttackEnemy HealthStationFilter

Idle

Name
Name

N , N Page 54
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/decision-weight.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/decision-weight.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/adjust-decision-weight.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/adjust-decision-weight.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 55/ 153

o Info

¢ The default value of Decision Weight is 1.0.

¢ You can adjust the weight of a decision to a value lower than 1.0 to decrease the priority of that decision.

H Tip

e You can adjust the weight of decisions to reduce oscillation between nearly equal decision-target pairs.

Momentum Bonus

In Utility Intelligence, you can prioritize the last chosen decision-target pair in the next decision-making round
by increasing the Momentum Bonus:

& Utility Intelligence

@ity Intelligence

File v

Intelligence

Intelligence

Compensation Factor

Momentum Bonus

Decision Makers

Reorderable
Name

Warrior Idle

Name

In the next decision-making round, the last chosen decision-target pair will be prioritized by multiplying its score
by the Momentum Bonus, increasing its chances of winning and thereby reducing oscillation between nearly
equal decision-target pairs.

y , . Page 55
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/momentum-bonus.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/momentum-bonus.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 56 / 153

o Info

e The default value of Momentum Bonus is 1.1.

e You can adjust the Momentum Bonus to a value lower than 1.0 to decrease the priority of the last chosen
decision-target pair.

Creating Decisions

To create a new decision, you need to go to the Intelligence Tab, fill in the Name field, and then click the Create
button:

B} Utility Intelligence

.ti\it'_\,f Intelligence

File v
np

Agent Decision Maker Decision

Decision Makers Decisions Weight
Reorderable Reorderable Target Filters
Name Best Deci... Name Best Target Has No Target

Warrior None X TestMelee None X Actions
p Running Until Finished +

Name Name viax Repe unt

Reorderable
Type Target

MeleeAttack None

Type ChargeEnergy ~

Create

Considerations

Reorderable
Name Target

List is empty

Name

After creating a decision, you can add Considerations to the decision and observe how they affect the decision
score. Additionally, you can add target filters and action tasks to the decision to determine which actions will be
executed with its targets if the decision is selected at runtime.

N , . Page 56
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/create-decision.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/create-decision.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 57 / 153

Decision Statuses

At runtime, decisions have 4 statuses:

:Running

: Inactive
At editor time, decision only have 2 statuses:
: Selected

: Unselected

y , . Page 57
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 58 / 153

Target Filters

Target Filters are used to filter targets for the current decision.

0 Note

* A decision may or may not have targets, so target filters are optional.

¢ You can enable/disable target filters of a decision by checking/unchecking the HasNoTarget toggle in the
Decision Tab.

Creating Target Filters

1. To create a new target filter, define a new class that inherits from TargetFilter and override the
OnFilterTarget method:

public class ChargeStationFilter : TargetFilter

{
public ChargeStationType Type;
protected override bool OnFilterTarget(UtilityEntity target)
{
return target.EntityFacade is ChargeStation station && station.Type == Type;
}
}

N , . Page 58
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 59 / 153

2. To add the the target filter to the intelligence asset, go to the Target Filter Tab, select the target filter type,

give it a name, and then click the Create button:
B Utility Intelligence

tility Intelligence
File A

Intelligence Decisions Considerations Blackboard

Target Filters Input Normalizations Inputs

TargetFilters ChargeStationFilter

Reorderable

Name Type HealthStation
HealthStationFilter
EnergyStationFilter

OtherTeamFilter

Name

Type
ChargeStationFilter
ArcheryTargetFilter
OtherTeamFilter
AgentFilter
OtherfFilter

3. To attach the target filter to a decision, select the decision in the Decision Tab, choose the target filter's
name, and then click the Add button:

| B Utility Intelligence

@:ility Intelligence

File A Data Version: 2 Framework Version: 1.1.0

Intelligence Decisions Target Filters Considerations Input Normalizations Inputs Blackboard

Decisions Decision Target Filter

Reorderable

Name Weight

MoveToHealthStation Target Filters

ChargeHealth Has No Target

MoveToEnergyStation Enable Cache Per Target

ChargeEnergy
MoveToEnemy
ShootCurvedArrow
EvadeFromTarget
Idle

Name

X X X X X X X X

Reorderable

Name

HealthStationFilter

Name

Actions
Keep Running Until Fini
Max Repeat Count

Reorderable

HealthStationFilter
EnergyStationFilter
OtherTeamFilter
CREATE NEW

Adding Parameter Fields

Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/target-filter-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/target-filter-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/TargetFilters/attach-target-filter.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/TargetFilters/attach-target-filter.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 60 / 153

There are many cases when you need to add parameters to an target filer to customize how it filter targets. To

achieve this, you need to declare these parameters as public fields in your target filters. Here an example of how
to do this:

public class TeamFilter : TargetFilter

{
public Team Team;
protected override bool OnFilterTarget(UtilityEntity target)
{
if (target.EntityFacade is Character targetCharacter)
{
return targetCharacter.Team == this.Team;
}
return false;
}
}

Supported Field Types

Currently, only the supported field types can be serialized to JSON and adjusted using the Utility Intelligence
Editor. Therefore, you should use these types when declaring parameter fields for your target filters.

Built-in Target Filters
Currently, we provides these built-in target Filters:

« OtherfFilter: Filters out the current agent, leaving other entities as targets.

o AgentFilter: Filters out entities that are not utility agents, leaving only utility agents as targets.

Page 60

Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 61/ 153

Action Tasks

Action Tasks are tasks that the agent has to execute if the attached decision has been selected. They are executed
either in sequence or in parallel, depending on the execution mode of the action list.

What is the action task system based on?

Utility Intelligence uses Behavior Trees to create and execute action tasks. Basically, the action task system is a
simplified Behavior Tree. It includes some popular nodes such as Repeater, Sequencer, and Parallel.

Execution Modes

After the agent finds out the best decision, it will execute the action list either in sequence or in parallel,
depending on your choice. Currently, there are two execution modes for the action list:
* Sequence

o The actions will be run sequentially.

« If an action finishes in success, the agent will run the next action, and the action list will finish in success if
the last action finishes in success.

o |f an action finishes in failure, the action list will Finish in Failure.
» Parallel

o The actions will be run simultaneously.

» The action list will finish in success if all actions are finished in success.

 If any action finishes in failure, other actions will be aborted and the action list will finish in failure.
o ParallelComplete

o The actions will be run simultaneously.

o IFany action finishes in success or failure, other actions will be aborted and the action list will return the
child status immediately.

You can choose the execution mode you want by selecting it from the action execution dropdown menu in the
Decision Tab.

N _ N Page 61
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 62 / 153

B Utility Intelligence
@ity Intelligence

File v

Intellic 2 Decisions ar ilte (3 Input No

Decisions Decision

Ndlle
Reorderable

HealthStationFilter
Name

MoveToHealthStation e
ChargeHealth
MoveToEnergyStation
ChargeEnergy x Actions
MoveToEnemy Keep Running Until Finishec
ShootCurvedArrow Max Repeat Count
EvadeFromTarget Reorderable
Idle Type
MoveToTarget
Name
UpdateSpeedFore
ParallelComplete
Sequence

Parallel

~ ParallelComplete

Considerations

Max Repeat Count

It is the number of times to repeat the action list.

0 Note

e The action list will only repeat if it is finished in success.

o |If MaxRepeatCount <=0 it will repeat forever until it returns failure.

You can change MaxRepeatCount Of the action list here:

N , N Page 62
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/actions-execution-mode.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/actions-execution-mode.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 63 / 153

B Utility Intelligence
tility Intelligence

v

Decisions : [Input N

Decision

Name Weight
MoveToHealthStation x Target Filters

ChargeHealth X Has No Target

MoveToEnergyStation X Enable Cache Per Target

ChargeEnergy x Reorderable
MoveToEnemy Name

ShootCurvedArrow HealthStationFilter
EvadeFromTarget

Idle x Name
NEIE

Actions

2p Running Until Finished

Reorderable
Type
MoveToTarget
ParallelComplete

Type

Keep Running Until Finished

In case you want to prevent the current agent from making a new decision while the action list is running, you can
check the option: Keep Running Until Finished in the Action List Editor.

d Tip

« By enabling this option for important decisions, such as AttackEnemy, ChargeHealth, and ReloadAmmunition, it
stops the agent from getting distracted by other non-important decisions. This helps reduce the oscillation
between these important decisions and other non-important ones.

¢ For example, with AttackEnemy decision, you should enable this option because the agent needs to finish the
attack before switching to another decision, such as RunAwayFromEnemy.

N , . Page 63
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/max-repeat-count.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/max-repeat-count.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 64 / 153

@ Note

than AttackEnemy.

running this decision.

* |fyou enable this option, the agent can only change its decision after the action list is finished, regardless of
whether the scores of other decisions are higher than the current one.

« For example, with AttackEnemy decision, the agent can only switch to another decision after each attack is
finished, even if the scores of other decisions such as RunAwayFromEnemy or ReloadAmmunition are higher

o Additionally, if the score of the AttackEnemy decision remains the highest after each attack, the agent will keep

To enable/disable Keep Running Until Finished option, you need to check/uncheck it in the Action List Editor:

B Utility Intelligence
tility Intelligence

File v

Inte e Decisions

Decisions

Reorderable

Name
MoveToHealthStation
ChargeHealth
MoveToEnergyStation
ChargeEnergy
MoveToEnemy
ShootCurvedArrow
EvadeFromTarget

Idle

NEInE]

Utility Intelligence: A Robust And Powerful Utility Al Framework

Input Nc

Decision

Weight

Target Filters
Has No Targe

Enable Cache Per Target
Reorderable
Name

HealthStationFilter

Name

Actions
Keep Running Until Finished

Max Repeat Count
Reorderable
Type

MoveToTarget

ParallelComplete

Type

Page 64

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/keep-running-until-finished.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/keep-running-until-finished.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 65 / 153

Creating Action Tasks
1. To create a new action task, define a new class that inherits from ActionTask :

public class Wait : ActionTask

{
private float elapsedTime;
public VariableReference<float> WaitTime = 1.0f;

protected override void OnStart()

{

elapsedTime = 0;

protected override UpdateStatus OnUpdate(float deltaTime)
{

elapsedTime += deltaTime;

if (elapsedTime > WaitTime) return UpdateStatus.Success;
return UpdateStatus.Running;

2. To assign the action task to a decision, select the decision in the Decision Tab, choose the action type, and
then click the Create button:

B Utility Intelligence O

tility Intelligence
File - Data Version: 2 Framework Version: 1.1.0

Int Decisions a ilt ati Inputs

Decisions Decision MoveToTarget

Reorderable Halis a NavMeshAgent NavMeshAgent
HealthStationFilter X -
Name WalkingSpeed
Animator

MoveToHealthStation NETE
Name [I
xamples
ChargeHealth
MoveToEneravStation NavMeshAgent ChaseTarget
e e At Test MoveAwayFromTarget
MoveToEnemy Keep Running Until Finis DestroySelf MoveToTarget

ShootCurvedArrow % eat Count FaceTarget Patrol

EvadeFromTarget X Reorderable FaceTargetForever
Idle x Type Idle
MoveToTarget Log
Name
I UpdateSpeedForever MoveTowardsTarget

RandomWait
ParallelComplete
StartCooldown

T'_.!,-' pe Wait

Adding Parameter Fields

N _ . Page 65
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/assign-action-task.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/assign-action-task.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 66 / 153

There are many cases when you need to add parameters to an action task to customize how it works. To achieve

this, you need to declare these parameters as public fields in your action tasks. Here are some examples of how to

do this:

[Category("

'"Examples")]

public class StartMeleeAttack : ActionTask

{
public
public
public
public

public
public
public

[Category('

MeleeAttackType AttackType;
int AttackDamage;

int AttackForce;

int ConsumeEnergy;

VariableReference<float> AttackRange;
VariableReference<int> AttackNumber;
VariableReference<string> AttackAnimationName;

'Examples")]

public class StartRangedAttack : ActionTask

{
public
public
public
public
public

RangedAttackType AttackType;
int ConsumeEnergy;

int AttackDamage;

int ProjectileSpeed;

float MaxCurvedHeight;

Supported Field Types

Currently, only the supported field types can be serialized to JSON and adjusted using the Utility Intelligence

Editor. Therefore, you should use these types when declaring parameter fields for your action tasks.

Action Task Statuses

At runtime, action tasks have 4 statuses:

:Running

=

: Aborted

Built-in Action Tasks

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 66

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 67 / 153

Currently, Utility Intelligence provides these built-in action tasks:

 Idle: Does nothing.

o Always returns UpdateStatus.Running .
e Log: Logs a message to the console.
o Wait: Waits until a wait time has passed.

o The wait time is specified in the waitTime variable.

o Returns updateStatus.Success When the wait time has passed, otherwise, returns updateStatus.Running .
o RandomWait: Waits until a wait time has passed.

e The wait time is chosen randomly between the wWaitTimeMin and wWaitTimeMax Vvariables.

o Returns updateStatus.Success When the wait time has passed, otherwise, returns updateStatus.Running .
o DestroySelf: Safely destroys the current agent.
 MoveTowardsTarget: Moves to wards the target.

o Uses Vector3.MoveTowards to move the agent towards the target.

e Returns updateStatus.Success When the agent has reached the target, otherwise, returns updateStatus.Running .
» StartCooldown: Starts a cooldown.

e The start time of the cooldown is stored in the cooldownStartTime variable, which is used by
CooldownElapsedTimeInput and IsInCooldownNormalization to determine if the agent is within the cooldown
duration.

e Animator
o SetBool: Set the value of the boolean parameter specified by paramName .
o SetFloat: Set the value of the float parameter specified by ParamName .
o Setlnteger: Set the value of the integer parameter specified by ParamName .
» SetTrigger: Set the value of the trigger parameter specified by paramName .
« WaitUntilAnimationFinished: Waits until the specified animation is finished.
o Returns updateStatus.Success if the animation specified by AnimationName has the normalized time greater
than FinishedNormalizedTime , otherwise, returns updateStatus.Running .
» NavMeshAgent
e ChaseTarget: Chases the target.
o The target position is updated every frame.

e Returns updateStatus.Success When the agent has reached the target, otherwise, returns

UpdateStatus.Running .
» MoveToTarget: Moves to the target.

e The target position is updated only once at the start.

N _ . Page 67
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 68 / 153

e Returns updateStatus.Success When the agent has reached the target, otherwise, returns

UpdateStatus.Running .

» MoveAwayFromTarget: Moves away from the target.

o It will choose a destination at a distance specified in the DistanceToNextPoint variable from the current

agent with the direction based on an enum called pirectionPriority .

e Returns updateStatus.Success When the agent has reached the destination, otherwise, returns

UpdateStatus.Running .

o Patrol: Patrols around the waypoints.

o It will move to the next way point in the waypoints variable if it has reached the current one.

o Always returns UpdateStatus.Running .

o FaceTarget: Faces the target.
e Returns updateStatus.Success right after the first update.
o FaceTargetForever. Faces the target forever.

o Always returns UpdateStatus.Running.

Properties and Functions
Properties

Here are some useful properties that you can use in your custom tasks:

Transform Transform { get; private set; }
GameObject GameObject { get; private set; }

UtilityAgentController AgentController { get; private set; }

Functions

GetComponent Functions

You can get any component attached to the GameObject by calling these functions:

T GetComponent<T>()
T GetComponentInChildren<T>()

Coroutine functions

We provides these functions to help you start/stop coroutines from action tasks:

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 68

https://utilityintelligence.carloslab-ai.com/Documentation/

voild StartCoroutine(string methodName);

Coroutine StartCoroutine(IEnumerator routine);

Coroutine StartCoroutine(string methodName, object value);

voild StopCoroutine(string methodName);

void StopCoroutine(IEnumerator routine);

void StopAllCoroutines();

Overridable Functions

Here is the list of functions you could override to make your actions works as you want:

o Lifecycle Functions:

void

void

OnAwake();

OnStart();

Status OnUpdate();

void

void

OnLateUpdate();

OnFixedUpdate();

Utility Intelligence - Documentation 69 / 153

//OnAbort is called when the action's target changes or when the agent makes a new decision

void

OnAbort();

//OnEnd is called after the action returns a success or failure

void

OnEnd();

« Collision/Trigger 3D:

void

void

void

void

void

void

void

OnCollisionEnter(Collision collision);

OnCollisionStay(Collision collision);

OnCollisionExit(Collision collision);

OnTriggerEnter(Collider other);

OnTriggerStay(Collider other);

OnTriggerExit(Collider other);

OnControllerColliderHit(ControllerColliderHit hit);

o Collision/Trigger 2D:

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 69

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 70 / 153

void OnCollisionEnter2D(Collision2D collision);
void OnCollisionStay2D(Collision2D collision);
void OnCollisionExit2D(Collision2D collision);
voild OnTriggerEnter2D(Collider2D other);

vold OnTriggerStay2D(Collider2D other);

vold OnTriggerExit2D(Collider2D other);

e Animation:

void OnAnimatorMove();

voild OnAnimatorIK(int layerIndex);

N , . Page 70
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 71/ 153

Considerations

In Utility Intelligence, a consideration (also called axis) represents an aspect of the game world that influences
the utility of a decision. And its score indicates how appealing the decision is based on that aspect.

For instance, imagine our agent has a decision called Attackenemy , which includes a consideration caled
EnemyHealthlsLow. Suppose the enemy’s health is 20, then the utility score of this consideration would be 0.8,
indicating high appeal to the agent. However if the agent’s health rises to 66, then the utility score decreases to
0.4, making the decision less appealing to the agent.

& Infinite Number of Considerations (Axes)

e You can add an infinite number of considerations (axes) to a decision. That's why Dave Mark called it: Infinite
Axis Utility System.

¢ For more information about Infinite Axis Utility System, you can watch his presentations here.

+ However, the more considerations you add, the closer decision score approaches 0. To address this, we introduced
Compensation Factor.

Understanding how considerations work
A consideration is made up of three components:

e AnInputs

e An Input Normalizations

+« AResponse Curve

These represent three phases to calculate the score of a consideration. In the previous example, the
EnemyHealthlsLow consideration has the following components:

» AnInputs that returns the enemy’s health.

e AnInput Normalizations that normalizes the enemy’s health into [e,1]

o A Response Curve that linearly inverts the normalized enemy’s health. It returns the consideration score that

indicates how appealing the decision is based on the enemy’s health aspect.

Then these consideration scores will be multiplied together to get the final score of the decision. Therefore, if the
score of any consideration is o, then the score of the decision will also be 0.

N , N Page 71
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 72 / 153

a2)

Consideration
(Axis)

2,
Yy,

Consideration
(Axis)

Consideration
(Axis)

. J

Compensation Factor

The more considerations a decision has, the lower the score it will be due to the multiplication. For example, if a
decision has 9 considerations and the score of each consideration is 0.9, then the final score of it will be 0.9° =
0.387.

Therefore, theoretically, if a decision has an infinite number of considerations, even if the consideration scores are
high, the final score of the decision will be close to o.

To address this issue, we added the Compensation Factor calculation, which takes into account the number of

considerations to balance it. This calculation originally presented in Building a Better Centaur: Al at Massive Scale
(9:10).

Here's how the compensation factor calculation is implemented in code:

public static float CompensateScore(float considerationScore, float considerationCount)
{

float modificationFactor = 1.0f - 1.0f / considerationCount;

float makeUpValue = (1.0f - considerationScore) * modificationFactor;

return considerationScore + makeUpValue * considerationScore;

N _ N Page 72
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/infinite-axis.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/infinite-axis.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 73 / 153

To enable/disable Compensation Factor, you need to check/uncheck the Compensation Factor option in the
Intelligence Editor.

B Utility Intelligence

@ity Intelligence

File v

Intelligence

Intelligence

Compensation Factor

Momentum Bonus
Decision Makers
Reorderable
NEE Best Decision Score

Archer EvadeFromTarget 1.210

Name

Creating Considerations

To create a new consideration, you need to go to the Consideration Tab, fill in the
Name field, and then click the Create button:

N , . Page 73
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/enable-compensation-factor.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/enable-compensation-factor.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 74 / 153

& Utility Intelligence O

.:ilit'_\a' Intelligence

File v Data Version: 2 Framework Version: 1.1.0

Int : Considerations Input Normaliz Inputs

Considerations Consideration

Reorderable

Name Has No Tare
fo][=] > Input Normalization
MyHealthlsLow ; Name MyHealth
MyEnergylsHigh
MyEnergylsLow Input

IsEnoughEnergy

IsNotInAttackCooldown Value

IsNotBeingAttacked Response Curve

IsinChargeRadius

IsNotInCha

IsTargetinAttackRange

IsTargetNotInAttackRange

Input
0]

Type Logistic
Slope -1
Exponent 1

hift 0
Y Shift 1
Basic Linear

Apply

After creating a consideration, you can select an Input Normalizations for it, and adjust the Response Curve and
observe how these changes affect the consideration score.

Consideration Statuses

Considerations only have two statuses at both runtime and editor time:

: Discarded

N , N Page 74
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/create-consideration.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/create-consideration.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 75/ 153

Response Curves

After aninputis normalized into [0, 1] by an input normalization, we need a way to map the normalized input to
a consideration score that indicates how appealing the decision is based on the consideration aspect. This is the

role of response curves.

In the previous example, the consideraton EnemyHealthlsLow has a response curve that linearly inverts the
normalized enemy'’s health. This curve returns the consideration score that indicates how appealing the decision
is based on the enemy’s health aspect. Therefore, the higher the enemy’s health, the lower the appeal of the

decision.
A response curve has 5 parameters:

e Curve Type
e Slope

e Exponent
o XShift

* YShift

You can change these parameters to adjust the shape of the response curve based on your needs.

Utility Intelligence also provides a list of useful presets for response curves. If you want to use our presets, you
just need to select one and click the Apply button.

y _ . Page 75
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 76 / 153

& Utility Intelligence

tility Intelligence
File v Data Version: 1

Considerations Ing

Considerations Consideration
Reorderable

Name Input
MyDistanceToTargetInSightRadius Name DistanceToTarget
Idle Value 0

Input Normalization
Name
Type IsinRangeFloat

Ma 1lue 0

MinValue 0

Response Curve

v Basic Linear
Inverse Linear
Constant
Basic logistic
Inverse logistic
Basic logit
Inverse logit

Type) .)
yP > quadric lower left

Slope ic quadric lower right
Expol quadric upper left
ic quadric upper right
> sine
Inverse sine
Basic bell curve

Inverse bell curve

d Tip

You can adjust the input values and response curves in the Consideration Tab to observe how they affect the
consideration scores.

N _ . Page 76
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/response-curves.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/response-curves.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 77 / 153

Inputs

An input is some knowledge about the game world that is used to calculate the score of a consideration. For

example:

e My health
e Enemy’s health

o Distance to the enemy

Creating Inputs

There are two ways to create a new input:
1. Define a new class that inherits from Input<Tvalue> and override the onGetRawInput funnction. For example:

public class DistanceToTargetInput : Input<float>

{
protected override float OnGetRawInput(in InputContext context)
{
var currentPos = AgentFacade.Position;
var targetPos = context.TargetFacade.Position;
currentPos.Y = 0;
targetPos.Y = 0;
return Vector3.Distance(currentPos, targetPos);
}
}

2. Define a new class that inherits from InputFromSource<Tvalue> and override the onGetRawInput function.

[Category("Examples")]
public class HealthInput : InputFromSource<int>

{
protected override int OnGetRawInput(in InputContext context)
{
UtilityEntity inputSource = GetInputSource(in context);
if (inputSource.EntityFacade is Character character)
{
return character.Health;
}
return 0;
}
}

y , . Page 77
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 78 / 153

o This method allows you to set the source of the input to Self or Target.

@ility Intelligence

L4

Inputs

Reorderable

Name Value
MyHealth 0
MyEnergy 0
MyState Normal
AttackCooldownElapsedTime

MyDista oTarget

ons Input Norma S Inputs

Healthinput

Enable Cache Per Target
Self
v Self

Target

¢ Note: Use this method only if the input exists in both Self and Target.

To add the input to the intelligence asset, go to the Input Tab, select the input type, give it a name, and then click

the Create button:

® Utility Intelligence

Decisions Target Filters

Value
0
0

Normal

Examples

Bool

Float

Considerations Input Normalizations Inputs

Healthinput

sNo T:
e Per Target

Self

CharacterStatelnput
Energylnput
Healthinput

To attach an input to an input normalization, select the input normalization in the Input Normalization Tab, and
then choose the input’s name from the dropdown menu:

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 78

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/input-source.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/input-source.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab.png
https://utilityintelligence.carloslab-ai.com/Documentation/

B Utility Intelligence

Input Normalizations

Reorderable

Name

MyEnergy

IsEnoughEnergy

Utility Intelligence - Documentation 79 / 153

Input Normalizations

DivideByMaxValueNormalizationlnt

e Per Target

MaxValue 100

Input

Name MyHealth
None
MyEnergy
MyHealth
CREATE NEW

0 Note

Note: Only inputs with the same value type as the input normalization can be attached to it.

d Tip

You can adjust the input values in the Intelligence Tab to observe how these changes affect the statuses of
considerations and decisions. For further details, check Status Preview.

Supported Value Types

Currently, only the supported value types can be adjusted using the Utility Intelligence Editor to preview which

decision is chosen with the Status Preview feature.

Therefore, you should use these types to enable the Status Preview feature. However, you can still use other

types if you don’t need this feature. For unsupported types, you can only modify the input values by overriding

onGetRawInput() function.

Adding Parameter Fields

There are many cases when you need to add parameters to an input to customize its return value. To achieve this,
you need to declare these parameters as public fields in your inputs. Here are some examples of how to do this:

Page 79

Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/select-input.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/select-input.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 80 / 153

public abstract class InputFromSource<T> : Input<T>

{
public InputSource InputSource;
protected UtilityEntity GetInputSource(in InputContext context)
{
if (InputSource == InputSource.Self)
return Agent;
if (InputSource == InputSource.Target)
return context.Target;
return null;
}
}

public abstract class BasicInput<T> : Input<T>

{
public VariableReference<T> InputValue;
protected override T OnGetRawInput(in InputContext context)
{
return InputValue.Value;
}
}

Supported Field Types

Currently, only the supported field types can be serialized to JSON and adjusted using the Utility Intelligence
Editor. Therefore, you should use these types when declaring parameter fields for your inputs.

Built-in Inputs

Currently, Utility Intelligence provides these buit-in inputs:

o BasiclnputFloatint
o BasiclnputBool
o BasiclnputFloat
» BasicinputDouble
o BasiclnputLong
o BasiclnputVector2
o BasiclnputVector3
o BasiclnputVector2int
o BasiclnputVector3int
¢ Returns the value from its InputValue field, which can reference a variable in the Blackboard.

» DistanceToTargetlnput: Returns the distance from the current agent to the target.

N , . Page 80
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 81/ 153

o CooldownElapsedTimelnput: Returns the elapsed time since the cooldown started.

» RaycastToTargetinput: Returns true if the raycast hits the target; otherwise, returns false.

N _ N Page 81
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 82 / 153

Input Normalizations

Since an input can vary widely in value, so we need a tool to normalize it into a fixed range [0,1] . This is where
input normalizations come into play. This step is crucial because it ensures that decisions are scored on a
consistent scale, allowing us to compare their scores and select the highest-scoring decision.

Creating Input Normalizations

To create a new input normalization, define a new class that inherits from InputNormalization<TValue> and override

the oncCalculateNormalizedInput method. For example:

[Category("Range")]
public class IsInRangeNormalizationFloat : InRangeNormalization<float>

{
protected override float OnCalculateNormalizedInput(float rawInput, in InputNormalizationContext context)
{
float normalizedInput = rawInput >= MinValue && rawInput <= MaxValue ? 1.0f : 0.0f;
return normalizedInput;
}
}

Page 82

Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 83 / 153

To add the input normalization to the intelligence asset, go to the Input Normalization Tab, select the input
normalization type, give it a name, and then click the Create button:
8 Utility Intelligence

tility Intelligence

File A

Int e Jecisions arget Filters i i Input Normalizations

Input Normalizations ivideB) ValueNormalizationInt
Reorderable
Name

MyHealth he Per Target

MyEnergy i[o]0]
IsEnoughEnergy

IsinAtta Input

IsBeingAtta Name MyHealth

IsinChargeRa Uz 0
getlnA
getNotInAttackR

IsTargetinDangerRs

TargetInSightRadius

Name
Type
Basic
Comparison
Division
Examples
Range InRangeNormalizationFloat
Float InRangeNormalizationInt
IsinRangeNormalizationFloat

IsinRangeNormalizationInt

To attach an input normalization to a consideration, select the consideration in the Consideration Tab, and then
choose the input normalization’s name from the dropdown menu:

N , . Page 83
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-normalization-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-normalization-tab.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 84 / 153

Data Version: 2 Framework

Consideratiol

C

Input Normalization

Name MyHealth
None

Input IsBeingAttacked
IsEnoughEnergy

Value IsinAttackCooldown

Response Curve IsinChargeRadius
IsTargetinAttackRange
IsTargetinDangerRadius
IsTargetNotInAttackRange
MyEnergy
MyHealth
TargetinSightRadius
CREATE NEW

X
X
X
X
X
X
X
X
X
X
X

Input
0

Logistic

Basic Linear

Apply

o Note

Note: Input normalizations can only accept inputs with the same value type.

Supported Value Types

Currently, only the supported value types can be adjusted using the Utility Intelligence Editor. Additionally, inputs
can only be attached to input normalizations if they share the same value type. Therefore, you should use these
types to enable the Status Preview feature to preview which decision is chosen by modifying the input values in
the Intelligence Editor. However, you can still use other types if you don't need this feature.

Adding Parameter Fields

There are many cases when you need to add parameters to an input normalization to customize how it normalizes
its input value. To achieve this, you need to declare these parameters as public fields in your input normalizations.
Here are some examples of how to do this:

public class IsInCooldownNormalization : InputNormalization<float>

{
public VariableReference<float> CooldownDuration;
protected override float OnCalculateNormalizedInput(float rawInput, in InputNormalizationContext context)
{
if (rawInput <= CooldownDuration)
return 1.0f;
else
return 0.0f;
}
}

N _ N Page 84
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/select-input-normalization.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/select-input-normalization.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 85/ 153

public abstract class InRangeNormalization<TValue> : InputNormalization<TValue>

{
public VariableReference<TValue> MinValue;
public VariableReference<TValue> MaxValue;

[Category("Range")]
public class InRangeNormalizationFloat : InRangeNormalization<float>

{
protected override float OnCalculateNormalizedInput(float rawInput, in InputNormalizationContext context)
{
var diff = MaxValue - MinValue;
if (diff <= 0.0f) return 0.0f;
float normalizedInput = (rawInput - MinValue) / (diff);
return normalizedInput;
}
}

[Category("Range")]
public class InRangeNormalizationInt : InRangeNormalization<int>

{
protected override float OnCalculateNormalizedInput(int rawInput, in InputNormalizationContext context)
{
var diff = MaxValue - MinValue;
if (diff <= 0) return 0.0f;
float normalizedInput = (float)(rawInput - MinValue) / (diff);
return normalizedInput;
}
}

Supported Parameter Types

Currently, only the supported field types can be serialized to JSON and adjusted using the Utility Intelligence
Editor. Therefore, you should use these types when declaring parameter fields for your input normalizations.

Built-in Input Normalizations

We provides a lot of built-in input normalizations to help you normalize your inputs without having to write a
single line of code:

e Float
o BasicNormalizationFloat: Clamps the input value into [0, 1]
o DivideByMaxValueFloat: Divides the input by Maxvatlue .

o GreaterThanOrEqualToValueFloat: Returns 1 if the input value is greater than value ; otherwise, returns o

o LessThanOrEqualToValueFloat: Returns 1 if the input value is less than the value ; otherwise, returns o.

Page 85

Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 86 / 153

» InRangeFloat: Maps the input value from [Minvalue, Maxvalue] to [©, 1].Note that if the input value is
above Maxvalue, then the normalized value is 1, and if the input value is below Maxvalue , then the normalized

valueis 0.
» IsInRangeFloat: Returns 1 if the inputvalueisin the range [Minvalue, Mavalue] ; otherwise, returns o.

« IsInCooldownNormalization: Returns 1 if the input (CooldownElapsedTimelnput) is within the cooldown
duration; otherwise, returns o.

e Int
« Similar to the floats
e Bool

« BasicNormalizationBool: Returns 1 if the input valueis true ; otherwise, returns o.

N _ . Page 86
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 87 / 153

Blackboard

Blackboard is used to share information between multiple components in an Agent.

» It can be access from many places, such as Inputs, Input Normalizations, Target Filters, Actions.

It contains a list of variables and you can Read/Write to these variables for any purpose.

Creating Variables

To create a new variable, define a new class that inherits from variable<Tvalue> . For example:

public class FloatVariable : Variable<float>

{
public static implicit operator FloatVariable(float value)
{
return new FloatVariable { Value = value };
}
}

To add the variable to the intelligence asset, go to the Blackboard Tab, select the variable type, give it a name,

and then click the Create button:

N , . Page 87
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Y Utility Intelligence
tility Intelligence
File v
Inte
Blackboard
Reorder:
Name

Animator

Animator

Bool

Color
CustomObject
CustomObjectlist
Double

Float
GameObject

Utility Intelligence - Documentation 88 / 153

O

Data Version: 2 Framework Version: 1.1.0

Input Norm ati ts Blackboard

NavMeshAgent GameObjectlist
SightRadius Int
AttackRadius Long

DangerRadius NavMeshAgent
WalkingSpeed String

AttackCooldownDu
Transform

AttackCooldownSta .
ACRLO00IGOW TransformlList
P EELETEININEINTE
Vector2
AttackParamName
VectorZint

Name Vector3

Type Vector3int

Supported Value Types
Currently, only the supported value types can be serialized to JSON and adjusted using the Intelligence Editor.

Therefore, you should use these types for your Blackboard Variables. However, you can still use other types if you
don't need to serialize them to JSON. For unsupported types, you need to add them to the Blackboard at runtime
like this:

public class PatrolWaypoints : MonoBehaviour
{
public List<Transform> Waypoints;
private void Start()
{ Character character = GetComponent<Character>();
var blackboard = character.Entity.Intelligence.Blackboard;
var waypointsVariable = blackboard.GetVariable<TransformListVariable>(BlackboardVariableNames.Waypoints);
waypointsVariable.Value = Waypoints;

1}

Referencing Variables

Page 88

Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Blackboard/add-variable.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Blackboard/add-variable.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 89 / 153

To reference the variable from an action task, declare a public field of type variablereference<Tvalue> in the action
task’s class. For example:

[Category("NavMeshAgent")]
public class MoveToTarget : NavMeshActionTask

{
public VariableReference<float> Speed = 5;
protected override void OnStart()
{
navMeshAgent.speed = Speed;
MoveToTarget();
}
protected override UpdateStatus OnUpdate(float deltaTime)
{
if (HasArrived())
return UpdateStatus.Success;
return UpdateStatus.Running;
}
protected override void OnEnd()
{
StopMove();
}
}

Then select the action task in the Decision Tab and choose the variable's name from this dropdown menu:

B Utility Inte nce a

@ility Intelligence

v Data Version: 2 Framework Version: 1.1.0

Decisions arget Filters Input Normaliz Inputs Black

Decisions ENE) MoveToTarget

mdile

Reorderable a NavMeshAgent NavMeshAgent

HealthStationFilter X -
Name 2C WalkingSpeed

MoveToHealthStation X Name AttackCooldownDuration

ChargeHealth X AttackCooldownStartTime
MoveToEnergyStation X - AttackRadius
ChargeEnergy X Actions DangerRadius
SightRadius
WalkingSpeed

CREATE NEW

MoveToEnemy Keep Running Until Finished

ShootCurvedArrow Max Repeat Count 0

EvadeFromTarget X Reorderable

Idle Type
MoveToTarget

Name
UpdateSpeedForever

ParallelComplete

Type

N _ . Page 89
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Blackboard/reference-variable.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Blackboard/reference-variable.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 90 / 153

Built-in Variables

Currently, we provides these built-in variables:

o Float

» Double

e Int

e Long

» Bool

e String

e Vector2

e Vector2int

e Vector3

e Vector3int

« Color

o GameObject

o GameObjectList
o Transform

» TransformList
e Animator

o NavMeshAgent
e ScriptableObject

o ScriptableObjectList

N _ . Page 90
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 91/ 153

Tips & Tricks

N , N Page 91
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 92 / 153

Tips & Tricks

General Tips & Tricks

Ask Al ChatBots

We provided detailed documentation in PDF format. So, if you need instant answers to your questions, upload our
documentation to the Al ChatBots, such as ChatGPT, Claude, or Perplexity, and then you can ask about anything
you don’t understand regarding Utility Intelligence. It's much easier for beginners to learn Utility Intelligence
this way.

Use GitHub Copilot

GitHub Copilot recently released a free plan. So, if you are having trouble getting started because you don’t
understand our code in the examples, you can ask GitHub Copilot to explain it to you for free.

Other Tips & Tricks

1. Intelligence Editor
2. Considerations

3. Decisions

4. Decision Makers

5. Utility Worlds

N , N Page 92
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 93 / 153

Intelligence Editor

Use Status Preview

After making changes to considerations or decisions, you can use our Status Preview feature to check whether
the results are as you expected.

o For better results, if your inputs have targets, you should create a separate input for each kind of target so that
you can change the input value for each target type to see how it affects the decision scores. For example, you
can create DistanceToEnemyA, DistanceToEnemyB, DistanceToHealthStation, DistanceToEnergyStation, €tc., adjust their
values, and then check the result in the Intelligence Editor.

Lock the Intelligence Editor

If you want to modify variables from other GameObjects and see how they affect the decision scores, you can
lock the Intelligence Editor, select other GameObjects, change those variables in the Inspector Window, and
see the results in the Intelligence Editor.

« For example, suppose you have an input called DistanceToTarget, and you want to see how it affects the
decision scores at runtime. You can lock the Intelligence Editor, drag the target around the current scene, and
then check the result in the Intelligence Editor.

For more information, please read: Lock the Editor

Group your components into categories

As your Al system becomes more complex, you will have many inputs, input normalizations, considerations, and
decisions, making it challenging to manage. You should group them into categories for easier management by
using CategoryAttribute and CategoryField.

For more information, please check: Categories

Organize Fields in the IntelligenceEditor

After your classes become more complex and have a lot of fields, you can organize your fields in the Intelligence
Editor by using the Field Attributes

Change class names and field names in JSON

When you change the class names or field names of a serializable component (Input, InputNormalization,
TargetFilter, or ActionTask), you can use the JSON Attributes to change those names in JSON.

N _ . Page 93
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 94 / 153

Considerations

There are 3 kinds of considerations:

» Boolean consideration: Returns a score of 0.0 or 1.0.
« Use this if you need to consider a Yes-No question. If the answer is yes, it returns 1.0, and vice versa.
o For example:
o |IsTargetinAttackRange
¢ IsTargetinDamageArea

¢ IsInAttackCooldown

e Variable consideration: Returns a score from 0.0 to 0.1.

o Use this if you need a consideration that returns a score that changes dynamically based on the current
input.

o For example:
o TargetInSightRadius
o TargetinAttackRange
o MyHealthlsLow

o TargetHealthlsHigh

e Constant consideration: Returns a constant score in [0.0, 1.0] . Use this when:
¢ You need a consideration that always returns a constant score, e.g., 0.1 or 0.2, etc.

» You need a fallback decision that will be selected if the the agent doesn’t know which decision to choose in
the current situation.

o For example:

o |dle

Common Consideration Recipes

Distance
IsTarget(Not)InRange

e Returns 1.0 if the target is within the specified range or 0.0 if it is outside the range.
* Recipe
e Input: DistanceToTargetInput

o InputNormalization: IsInRangeNormalization

N _ N Page 94
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 95/ 153

o ResponseCurve: Basic Linear (Inverse Linear)

TargetinRange

e Returnsascorein [6.0, 1.0].It maps the input value (pistanceToTargetInput) from [Start, End] to [0.0, 1.0].
o If the input value is less than Start, returns 0.0
o Ifthe inputvalue is greater than End, returns 1.0
e Recipe
o Input: DistanceToTargetInput
e InputNormalization: InRangeNormalization

o ResponseCurve: Which ResponseCurve should you use?

Is(StateName)State

e Returns 1.0 ifinputstate is the specified state; otherwise returns 6.6 .
e Recipe:
o Input: User Custom Input (often an Enum)
o Returns a state of the agent or the target.
o InputNormalization: User Custom Input
o Returns 1.0 ifinput state is the specified state.
e Returns 1.0 ifinput state is not the specified state.

¢ ResponseCurve: Basic Linear (Inverse Linear)

Is(Not)InCooldown

e Returns 1.0 if the cooldownElapsedTimeInput is within the cooldown duration; otherwise returns o.0
e Recipe:

¢ Input: CooldownElapsedTimeInput

e InputNormalization: IsInCooldownNormalization

¢ ResponseCurve: Basic Linear (Inverse Linear)

Random
« Returns arandom scorein [0.0, 1.0]
e Recipe:

¢ Input: User Custom Input

o Returns a random input value.

Page 95

Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

o InputNormalization: BasicNormalization

e ResponseCurve: Basic Linear

Health

e The input value will be normalized by dividing by 100
o Iftheinputis less than o.e, returns 0.0
o Iftheinputis greater than 1ee, returns 1.0
e Recipe
o Input: Health
o InputNormalization: pivideByMaxValue

» ResponseCurve: Which ResponseCurve should you use?

Idle

e Returns a constant score (often o0.1)
e Recipe:

¢ Input: None

o InputNormalization: None

¢ ResponseCurve: Constant

Which ResponseCurve should you use?

e Boolean considerations:
e Basic Linear Ol Inverse Linear

e Variable considerations:
Suppose the input gradually increases from 6.6 to 1.0:

o The score is proportional to the input and increases gradually.

e Linear: Basic Linear

Slow at first, fast later: Basic Quadric Lower Right

Fast at first, slow later: Basic Quadric Upper Left

Slow at either end, fast in the middle: Basic Logistic

Fast at either end, slow in the middle: Basic Logit

o The score is inversely proportional to the input and decreases gradually.

e Linear: Inverse Linear

o Slow at first, fast later: Basic Quadric Upper Right

Utility Intelligence: A Robust And Powerful Utility Al Framework

Utility Intelligence - Documentation 96 / 153

Page 96

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 97 / 153

o Fast at first, slow later: Basic Quadric Lower Left
e Slow at either end, fast in the middle: Inverse Logistic
o Fast at either end, slow in the middle: Inverse Logit
e The score fluctuates
¢ Slow at either end, fast in the middle: Basic Bell Curve Or Inverse Bell Curve
e Fast at either end, slow in the middle: Basic Logit Or Inverse Logit

e More dynamic: Basic Sine O Inverse Sine

e Constant considerations:

e (Constant

N _ . Page 97
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 98 / 153

Decisions

Enable Compensation Factor

If your agents have decisions that contain a lot of considerations, you should enable Compensation Factor to
ensure the decision scores are not quite low.

For more information about Compensation Factor, see: Compensation Factor

Enable KeepRunningUntilFinished

If your agents have an important decision that you don’t want to interrupt while it is running, regardless of
whether there is another decision with a higher score, you can enable the KeepRunningUntilFinished option of
the decision to prevent the agents from making a new decision while it is running.

For more information about KeepRunningUntilFinished, see: KeepRunningUntilFinished

Use MomentumBonus

If you want to prioritize the last chosen decision-target pair in the next decision-making round, you can set the
Momentum Bonus to a value greater than 1.0 (usually between 1.1 -> 1.25). In the next decision-making round,
the last chosen decision-target pair will be prioritized by multiplying its score by the Momentum Bonus,

increasing its chances of winning and thereby reducing oscillation between nearly equal decision-target pairs.

For more information about MomentumBonus, see: Momentum Bonus

Add Fallback Decision

You should add a fallback decision with a constant score so that your agents always have a decision to run.

o For example, in our example scenes, we always add the Idle decision with a score of 0.1. Therefore, when our
agents find themselves in a situation where they don’t know which decision to choose, they will be idle.

Use Decision Weight

If you want to prioritize one decision over another, you can adjust its weight to be higher than the other.
For example:

o Normal Layer’'s Weight: 1.0
o Combat Layer's Weight: 2.0

o Urgent Layer’'s Weight: 3.0

N _ . Page 98
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 99 / 153

For more information about Decision Weight, see: Decision Weight

Use empty TargetFilter list for Decisions that target all Entities

If the targets of your decision are all entities in the current utility world, you can leave the TargetFilter list of the
decision empty. For decisions that have targets and an empty TargetFilter list, the utility world will pass all its
entities to the decision.

How Tos

How to enable/disable a decision based on a condition?

Add a boolean consideration that returns 1.0 (true) or 0.0 (false) depending on the condition result.

How to enable/disable decisions based on states

Add a state consideration to each decision. Check the recipe for a state consideration here: Common
Consideration Recipes

How to add some randomness to a decision?

Add a random consideration to the decision. Check the recipe for a random consideration here: Common
Consideration Recipes

How to reduce the oscillation of scores between decision-target pairs

For more information about how to reduce the oscillation of scores between decision-target pairs, see:
Oscillation between decision-target pairs

N , . Page 99
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 100 / 153

Decision Makers

Character Transformation

In case you want to transform your character into another with a different set of behaviors, you can create a
separate Decision Maker for each kind of character. For example, if you want to transform a warrior into an
archer when he picks up a bow, you can create one Decision Maker for the warrior and another for the archer.

Note: you need to add a boolean consideration (HasABow) to all decisions in the Archer DM to enable/disable
the DM based on the condition of whether the archer has a bow.

. , . Page 100
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 101 / 153

Utility Worlds

Create separate worlds for different purposes

Utility Worlds can serve a variety of purposes within a game. For example, you can create one utility world for
handling character behaviors during combat (attacking, moving, fleeing, etc.), one utility world for managing
character behaviors in daily routines (eating, sleeping, drinking, resting, etc.), and another for controlling
character interactions in social scenarios. Each Utility World can Focus on a specific aspect of the game, enabling

modular and maintainable Al systems.

The key benefit of using multiple worlds is to reduce the cost of decision-making. When your characters have
different sets of behaviors (Decision Makers), if you put all of them into one Intelligence Asset, the cost of
decision-making will be high because behaviors in one set may not be used in other sets (e.g. combat behaviors
not being used in daily routines).

o Benefits

e Reduce the number of considerations, decisions, decision makers that need to be executed.
e Reduce the number of targets that need to be filtered

e Each decision has different types of targets, so it requires different types of target filters. If you include all
decisions in one Intelligence Asset, you will need to register all their targets with the utility world. This will
increase the cost of filtering targets for these decisions.

. , . Page 101
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 102 / 153

Optimization Tricks

Optimizing the decision-making process

Adjust the decision-making interval

In Utility Intelligence, decision-making is separated from decision-execution, allowing you to run decision-making
at a different frequency than decision-execution by adjusting the Decision Making Interval in the Utility World

Controller:

) Inspector

’ aps
." v UtilityWorld

Tag Untagged ayer Default

Transform

v Utility World Controller

Decision Making Interval 0.1
Enable Decision Making B

Decision Making Batch Si: 40

Add Component

The default decision-making interval is 0.1s. You can inrease it to 0.2s, 0.3s, or 0.5s depending on your game
needs. It will help reduce computational burden on the CPU.

Distribute the decision-making task across multiple frames

. , . Page 102
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#how-utility-ai-addresses-this_2
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/adjust-decision-making-interval.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/adjust-decision-making-interval.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 103 / 153

Starting from v2.1.0, we can distribute the decision-making task across multiple frames to balance the workload

by checking Enable Decision Making Batch Processing in the Utility World Controller.
@ Inspector

4’. -
"' v UtilityWorld

Tag Untagged * lLayer Default

Transform

B v Utility World Controller

Decision Making Intenr 01
Enable Decision Making Batch Processing

Decision Making Batch Size 40

Add Component

After Enable Decision Making Batch Processing is checked, you can set the Decision Making Batch Size to limit
the number of agents that can make decisions per frame. The default batch size is 40.

For example, if you have 500 agents, and you set the Decision Making Batch Size to 20, it will take 25 frames to
complete the decision-making process.

This feature will help you handle significantly more agents than before. Previously, the decision-making for all
agents in a utility world was processed within a single frame, which could cause spikes in the profiler if you had a
high number of agents. Now you can limit the number of agents to 20 per frame, or even to 10 per frame. This will
greatly reduce the computational burden per frame on the CPU, and help avoid performance spikes.

Here's my test with 300 agents: the decision-making process runs every 0.25s and processes 10 agents per frame.

. , . Page 103
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/decision-making-batch-processing.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/decision-making-batch-processing.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 104 / 153

New Feature: Decision Making Batch Processing (v2.1.0) | Utility Al Framewo...

Create separate worlds for different purposes

If your agents have different sets of behaviors for different purposes, you should create a separate utility world
for each purpose to reduce the cost of decision-making.

For more information, please read: Why you should create separate worlds for different purposes.

Optimizing the score-calculation process

Understanding how the process works

N _ N Page 104
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://www.youtube.com/watch?v=AiEFqbusw5w
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 105 / 153

Before starting optimization, you need to understand how the score-calculation process works first. In Utility

Intelligence, the score-calculation process is executed sequentially from top to bottom, and the lower ones are

discarded if they cannot possibly beat the higher one.

For example:

-~

N

(Weight = 1)

Decision 1

(0.61)

(Weight = 1)

Decision 2

(0.00)

Consideration 1
(0.86)

Consideration 1
(0.54)

Consideration 2
(Discarded)

SCE
SCE

. Consideration 3
(Discarded)

~

)

In this case, firstly, Decision 1 is scored, and its final score is 0.61 . This score will be passed into the score-

calculation process of Decision 2 as minToBeat .

When calculating the score of Decision 2, since its first consideration is scored as 0.54 and the decision weight is

1, the maximum score of Decision 2 is 0.54 . Since it is lower than minToBeat , Decision 2 realizes that it cannot

beat Decision 1. Consequently, all lower considerations are discarded and the final score of Decision 2 is 0.006 .

For decision makers, they are similar to decisions, if the lower ones realize that they cannot possibly beat the

higher one, then they will be discarded, and their final score will be o.00 .

How to optimize the process

Now that you understand how the score-calculation process works, and to optimize this process, follow these

guidelines:

Reordering decision makers, decisions, and considerations

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 105

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/ones-below-discarded.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/ones-below-discarded.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 106 / 153

o Considerations
» Put considerations that have a high probability of returning a low score at the top.

o This ensures that lower considerations will be discarded because it's very difficult For lower decisions to
beat the higher ones if their First consideration returns a low score.

» A good question we should ask ourselves when doing this is: Does this consideration return a low score
most of the time? For example:

e IsTargetInAttackRange (it usually returns 0.0 because most of the time the target is not in the attack
range).
o Put considerations that are expensive at the bottom. For example:

o Considerations using raycasts.

o Decisions
o Put decisions that have a high probability of returning a high score at the top.

o This ensures that lower decisions will be discarded because it’s very difficult for them to beat the higher
ones with a high score.

» A good question we should ask ourselves when doing this is: Does this decision return a high score most
of the time? For example:

e FindPlayer (it usually returns high score because most of the monsters are constantly finding the
player).

o Decisions with high weights.

« Decision Makers

o Similar to decisions.

To reorder decision makers, decisions, and considerations, you need to enable the Reorderable option in the
Editor. This option adds drag handles before every item, allowing you to change the order of each item by
dragging it.

. , . Page 106
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Y Utility Intelligence
@:ility Intelligence
File v

Intelligence Target Filters

Intelligence

Decision Makers

Reorderable v

NElnl= Best Deci... Score

~

Considerations Inputs

Decision Maker

Decisions

Reorderable v

Name Best Target

Warrior ChargeHealth 1.200

X l MoveTotNone

Name

0 Note

[Chargek-None

MoveToENone
ChargeENone
MoveToENone
AttackErNone

[o][=] None

Name

e Considerations that are green have been executed.

e Considerations that are

have been discarded.

Decision

Weight

Utility Intelligence - Documentation 107 / 153

Target Filters

Has No Target

Reorderable

MName

HealthStationFilter X

Name

Actions

HealthStati v

Keep Running Until Finished

Max Repeat Count 0

Reorderable

Type

Target

NavMeshMoveNone X

Type

ChargeEnel~
Create

Considerations

Reorderable

Name

Target Score

IsMyStiNone 1.000
MyHealNone 1.000
MyDistiNone 1.000

e For more information about the statuses of considerations, check Consideration Statuses

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 107

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/reorderable.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/reorderable.png
https://utilityintelligence.carloslab-ai.com/Documentation/

' Utility Intelligence

@:ility Intelligence
File

Intelligence

Decision Makers

Reorderable

rat

Decision Maker

Decisions

Reorderable

Utility Intelligence - Documentation 108 / 153

Decision

Name

Name Best Deci... Score Name Best Target Score OtherTeampFilter

Warrior AttackEnemy 0.986 MoveToHealthSNone 0.000

ChargeHealth MNone 0.000 Name HealthStationFilter

Name MoveToEnergySNone 0197 X Add

ChargeEner 0.000

MoveToEnemy None 0.000 Actions
p Running Until Fini
Naone
Count
Idle Neone

Reorderable

Name Type Target

NavMes Towards None

Type ChargeEnergy
Create

Considerations
Reorderable
Name Target
IsMyStateNormal None
yNotinAttackFNone 0.000
MyHealthlsHigh None 0.000
MyEnergylsHigh None 0.000

eToEnemylNone 0.000

Caching calculated results

Did you know that calculated results from inputs, input normalizations, considerations and decisions can be
cached and reused across parent components, thereby eliminating unnecessary recalculations.

Considerations
To enable caching the calculated score of a consideration:

. , . Page 108
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/considerations-statuses.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/considerations-statuses.png
https://utilityintelligence.carloslab-ai.com/Documentation/

 If the consideration has no target, check the HasNoTarget toggle:

Y Utility Intelligence
@ity Intelligence
File ~

Intelligence Jecisions

Considerations

Reorderable

Name
Idle
MyHealthlsLow
MyEnergylsHigh
MyEnergylsLow
IsEnoughEnergy
IsNotInAttackCooldown
IsNotBeingAttacked
IsinChargeRadius
IsNotInChargeRadius
IsTargetinAttackRange
IsTargetNotInAttackRange
IsTargetinDangerRadius

TargetInSightRadius

Name

larget Filters

Utility Intelligence - Documentation 109 / 153

O

Data Version: 2 Framework Version: 1.1.0

Considerations

X
X
X
X
X
X
X
X
X
X
X
X
X

Consideration

Has No Target v

Input Normalization

Name

Input

Value

Response Curve

1

Input Normalizations

Inputs Blackboarc

IsBeingAttacked

Normal

Input

0

Type
Slope
Exponent
XShift

Y Shift

Basic Linear

Linear
-1

0

0

1

Apply

« If the consideration has targets, uncheck the HasNoTarget toggle and check the EnableCachePerTarget

toggle:

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 109

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/has-no-target.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/has-no-target.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 110 / 153

B Utility Intelligence O X

@ity Intelligence
File v Data Version: 2 Framework Version: 1.1.0

)

Intelligence Jecisions Target Filters Considerations Input Normalizations Inputs Blackboard

Considerations Consideration
Reorderable

Name Has No Target

Idle Enable Cache Per Target

MyHealthlsLow Input Normalization

MyEnergylsHigh Name IsTargetinAttackRange
MyEnergylsLow
IsEnoughEnergy

IsNotInAttackCooldown

Input

IsNotBeingAttacked Value

IsinChargeRadius Response Curve

IsNotInChargeRadius 1
IsTargetinAttackRange
IsTargetNotInAttackRange

IsTargetinDangerRadius

X
X
X
X
X
X
X
X
X
X
X
X
X

TargetinSightRadius

Name

Type
Slope
Exponent
XShift

Y Shift

Basic Linear

Apply

. , . Page 110
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/enable-cache-per-target.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/enable-cache-per-target.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 111/ 153

@ Note

¢ Enable Cache Per Target

e Managing scores for individual targets incurs a cost. Therefore, caching is only effective if the cost of caching is
lower than the cost of recalculating the score.

¢ You should enable caching per target only if the consideration contains heavy inputs, input normalizations and
is used by multiple decisions.

e Has No Target

e The consideration is treated as having no target. In this case, the consideration score is cached directly within
the consideration, eliminating the need to manage scores for individual targets. This results in a very low

caching cost.

¢ You should enable this option for every consideration that does not access the decision’s target.

Inputs, Input Normalizations and Decisions

¢ Similar to considerations.

. , . Page 111
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 112 / 153

Supported Types

Supported Value Types

Currently, only the following value types are supported. You should use these types as value types for Inputs,
Input Normalizations, and Blackboard Variables:
L4 enum

e 1int

e long

o float

e double

e bool

e string

* Vector2

® \Vector2Int

e \ector3

e Vector3Int

e (Color

0 Note

You can still use other types as value types for Inputs, Input Normalizations, and Blackboard Variables. However, they
will not be shown in the Intelligence Editor. Therefore, you will not be able to adjust their values through the
Intelligence Editor

Supported Field Types

Currently, only the following field types can be serialized to JSON and adjusted using the Utility Intelligence
Editor. You should use these types when declaring parameter fields for Inputs, Input Normalizations, Action Tasks,
and Target Filters.

® enum
e 1int

e Tlong
e float

e double

. , . Page 112
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 113 / 153

* bool
string

e \Vector2
Vector2Int
e \ector3

e \Vector3Int
e Color

e LayerMask

e VariableReference<TValue>

. , . Page 113
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 114 / 153

Attributes

JSON Attributes

Some users have provided feedback that renaming class names and field names is currently quite annoying
because it has to be done manually by editing the serialized JSON. So, in v2.2.0, we introduce these attributes to

make renaming class names and field names easier and faster.

ﬂ Info

You can use these attributes for input, input normalizations, action tasks and target filters.

ClassFormerlySerializedAs

To change a class name from CarlosLab.0ldNamespace.0ldActionTask tO CarlosLab.NewNamespace.NewActionTask , you need
to pass the old class name and the old namespace to the constructor of classFormerlySerializedAs :

namespace CarloslLab.NewNamespace

{
[ClassFormerlySerializedAs(oldClassName: "OldActionTask", oldNamespace:"CarlosLab.0ldNamespace")]
public class NewActionTask : ActionTask
{
}
}

If the namespace remains unchanged, you only need to pass the old class name:

namespace CarlosLab.Unchanged

{
[ClassFormerlySerializedAs(oldClassName: "OldActionTask")]
public class NewActionTask : ActionTask
{
}
}

FieldFormerlySerializedAs

To change a field name from oldrield to NewField, you need to pass the old field name to the constructor of

FieldFormerlySerializedAs :

public class NewActionTask : ActionTask

{
[FleldFormerlySerializedAs("OldField")]
public int NewField;

Page 114

Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 115/ 153

Field Attributes

We have received feedback that it's currently hard to read our classes as they become more complex and have a
lot of Fields. So, in v2.2.0, we added these attributes to help you organize your fields in the Intelligence Editor.

©® info

You can use these attributes in input, input normalizations, action tasks and target filters.

New Feature: Field Attributes (v2.2.0) | Utility Al Framework for Unity GameO...

BoxGroup & FoldoutGroup

BoxGroup and FoldoutGroup attributes are used to group fields in the Intelligence Editor.

. , . Page 115
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://www.youtube.com/watch?v=3akWNkNjT88
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 116 / 153

public class TestGroupTask : ActionTask

{
[BoxGroup("Group1")]
public string Fieldi;

[BoxGroup("Groupl")]
public int Field2;

[BoxGroup("Groupl")]
public float Field3;

[FoldoutGroup("Group2")]
public string Field4;

[FoldoutGroup("Group2")]
public int Field5;

[FoldoutGroup("Group2")]
public float Field6;

Here's how it looks in the Intelligence Editor:

TestGroupTask
Group1
Field1
Field2

Field3

Group2

Field4

Field6

Showlf & Hidelf

showIf and HideIf attributes are used to show/hide fields in the Intelligence Editor. These attributes allow users
to display fields based on conditions. You can use them for basic types, such as bool, enum, string, float,and int.

Here are examples of how to use these attributes with bool type and enum type:

Bool

Page 116

Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/group-attributes.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/group-attributes.png
https://utilityintelligence.carloslab-ai.com/Documentation/

publ
{

Here's how it looks in the Intelligence Editor:

Enum

ic class TestBoolTask : ActionTask
public bool Toggle;

[ShowIf("Toggle")]
public int ShowIfToggleDefault;

[ShowIf("Toggle", true)]
public float ShowIfToggleTrue;

[ShowIf("Toggle", false)]
public int ShowIfToggleFalse;

[HideIf("Toggle")]
public float HideIfToggleDefault;

[HideIf("Toggle", true)]
public float HideIfToggleTrue;

[HideIf("Toggle", false)]
public int HideIfToggleFalse;

TestBoolTask
Toggle

ShowlfToggleDefault 0
ShowlfToggleTrue

HidelfToggleFalse

TestBoolTask
Toggle

ShowlfToggleFalse

HidelfToggleDefault

HidelfToggleTrue

Utility Intelligence: A Robust And Powerful Utility Al Framework

Utility Intelligence - Documentation 117 / 153

Page 117

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-bool-true.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-bool-true.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-bool-false.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-bool-false.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 118 / 153

public enum TestEnum

{
Typel,
Type2,
Type3,

public class TestEnumTask : ActionTask

{
public TestEnum Type;

[ShowIf("Type")]
public bool ShowIfTypeDefault;

[ShowIf("Type", TestEnum.Typel)]
public bool ShowIfTypel;

[ShowIf("Type", TestEnum.Type2)]
public float ShowIfType2;

[ShowIf("Type", TestEnum.Type3)]
public int ShowIfType3;

[HideIf("Type")]

public bool HideIfTypeDefault;
[HideIf("Type", TestEnum.Typel)]
public bool HideIfTypel;

[HideIf("Type", TestEnum.Type2)]
public float HideIfType2;

[HideIf("Type", TestEnum.Type3)]
public int HideIfType3;

Here's how it looks in the Intelligence Editor:

Page 118

Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 119 / 153

TestEnumTask

TestEnumTask
Type

ShowlfType2

HidelfTypel

HidelfType3

TestEnumTask

Category Attribute

category attribute is used to group your classes into categories. You can check how to use it here: Category
Attribute.

. , . Page 119
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type1.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type1.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type2.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type2.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type3.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type3.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 120 / 153

Categories

As your Al system becomes more complex, you will have a lot of inputs, input normaizations, considerations and
decisions, making it challenging to manage. That's why we provide these tools to help you group them into

categories.

Category Attribute

You can use the Category Attribute to group your classes into categories.

o Info

The Category Attribute can be applied to input, input normalizations, action tasks, target filters and blackboard

variables.

Here's an example of how to use it for inputs:

[Category("Examples")]
public class HealthInput : InputFromSource<int>

{
}

This allows you to group your inputs into categories in the Input Type dropdown menu within the Input Tab.

. , . Page 120
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 121 / 153

B Utility Intelligence

®iiiity Intelligence

File v

Intelligence Decisions Target Filters Considerations Input Normalizations

Inputs

Reorderable

Name Value
MyHealth 0
MyEnergy 0
MyState Normal
AttackCooldownElapsedTin 0
MyDistanceToTarget 0

REINIE]
Type
Basic
Examples CharacterStatelnput
Bool EnergyInput
Float HealthInput

Category Field

After they are created, you can use the Category Field to group them into categories.

o Info

The Category Field is added in inputs, input normalizations, considerations, decisions, target filters and blackboard
variables.

Here's an example of how to use it for decisions:

. , . Page 121
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-create-input.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-create-input.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 122 / 153

B Utility Intelligence
.,ti\ity Intelligence
File 7

Intelligence Decisions Target Filters Considerations Input Normalizations Inputs Blackboard

Decisions Decision

Reorderable

Name Category Movement
MoveToHealthStation
ChargeHealth
MoveToEnergyStation

Weight 11
Has No Target

Enable Cache Per Target

ChargeEnergy Target Filters

MoveToEnemy Reorderable
ShootCurvedArrow Name
EvadeFromTarget

Idle

HealthStationFilter

X |26 12X [26| 2K | 12X | 2 | 12X

Considerations

Actions

This allows you to group your decisions into categories in the Decision Name dropdown menu within the
Intelligence Tab.

B Utility Intelligence

.,timy Intelligence
File

Intelligence Decisions Target Filters Considerations Input Normalizations Inputs Blackboard

Intelligence Decision Maker Decision

Compensation Factor Decisi
ecisions
Momentum Bonus Reorderable Target Filters

Decision Makers Name Best Target

Reorderable
Name

OtherTeamFilter

I EvadeFromTarget None
Name Best Decision | Score MoveToEnemy None
Archer EvadeFromTarg¢ 1.100 X l ShootCurvedArrow |None

MoveToHealthStation None BEIEELEIEE

ChargeHealth None Name Target
MoveToEnergyStation None IsNotBeingAttacke/None

ChargeEnergy None IsTargetinDangerRiNone

XX 22X XX | 2 | X

Idle None
Actions

Charge

Movement MoveToEnemy Target
EvadeFromTarget MoveToEnergyStation None
Idle MoveToHealthStation None
ShootCurvedArrow FaceTargetForever None

CREATE NEW ReturnFailureWhenBeir None

Page 122

Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-decision.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-decision.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-create-decision.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-create-decision.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 123 / 153

Upgrade Guide

General Upgrade Guide

Since the folder structure of this plugin might change frequently, the best way to upgrade Utility Intelligence to
a newer version is to first delete your old asset folders and then re-import the new version:
1. Backup your project
2. Delete the following folders:
e v
o Assets/CarlosLab/Common
o Assets/CarlosLab/Utilitylntelligence
e V2
o Packages/com.carloslab.common

o Packages/com.carloslab.utilityintelligence
3. Download the new version and then re-import the package.

However, if the changes are minor, such as upgrading from v2.0.1 to v2.0.2, you can re-import the new version
without having to delete the old asset folders.

Upgrading from v1 to v2

2.0.0 is a major release with a lot of changes. It includes some breaking changes that require manual updates
when upgrading from v1 to v2. Sorry for the inconvenience.

Caution

These changes may break your project, so please backup your project before upgrading.

Intelligence Asset

We've made some breaking changes to the data structure of Intelligence Assets and increased the data version
from v1 to v2. Therefore, you need to update your intelligence assets to data v2 so that this framework can

deserialize them.

1. Update the intelligence data.
o Select File -> Show Data to show the intelligence data.
° Change MyDistanceToTargetInput tO DistanceToTargetInput .

o Change NavMeshMoveTowards tO MoveToTarget .

. , . Page 123
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 124 / 153

o Remove all InputNormalizations from all Considerations.

¢ Move Decisions from DecisionMakers to the outer scope.
Data Structure - v1

"Stype": "CarlosLab.UtilityIntelligence.UtilityIntelligenceModel",
"DecisionMakers": [

{
"Stype": "CarlosLab.UtilityIntelligence.DecisionMakerModel",

"Id": "6f5616e5-a485-4c3b-9bc4-1eb1f10530fa",
"Name": "Warrior",
"Decisions": [
{
"Stype": "CarloslLab.UtilityIntelligence.DecisionModel",
"Id": "a36b4f16-d8d0-4069-94ab-925828eb3c7d",
"Name": "MoveToHealthStation",

Data Structure - v2

{
"Stype": "CarlosLab.UtilityIntelligence.UtilityIntelligenceModel",
"DecisionMakers": [
{
"Stype": "CarlosLab.UtilityIntelligence.DecisionMakerModel",
"Id": "6f5616e5-a485-4c3b-9bc4-1eb1f10530fa",
"Name": "Warrior",
}
1,
"Decisions": [
{
"Stype": "CarlosLab.UtilityIntelligence.DecisionModel",
"Id": "a36b4f16-d8d0-4069-94ab-925828eb3c7d",
"Name": "MoveToHealthStation",
}
1,
}

o Select File -> Import Data to import the new intelligence data to the asset.

2. Create new input normalizations in the Input Normalization Tab.

3. Select the appropriate input normalization for your considerations in the Consideration Tab.

4. Add decisions to your decision makers in the Intelligence Tab.

y , . Page 124
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 125/ 153

Source Code
Input
Add the in keyword before InputContext in the onGetRawInput Function.

vi

protected override int OnGetRawInput(InputContext context)
v2

protected override int OnGetRawInput(in InputContext context)

InputNormalization
Change InputContext tO in InputNormalizationContext in the OnCalculateNormalizedInput function.

vi

protected override float OnCalculateNormalizedInput(int rawInput, InputContext context)
v2

protected override float OnCalculateNormalizedInput(int rawInput, in InputNormalizationContext context)

. , . Page 125
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 126 / 153

Release Notes

. , . Page 126
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 127 / 153

Release Notes - v1

1.0.11
Changed

e Changed Getvariable<Tvalue>() function of the Blackboard to Getvariable<Tvariable>() . Now, you have to pass
variable type instead of value type to the function.

public void TestBlackboard()

{
var blackboard = characterFacade.Entity.Intelligence.Blackboard;
var sightRadiusVariable = blackboard.GetVariable<FloatVariable>("SightRadius");
sightRadiusVariable.Value = 30;
}
Added

o Added GameObjectListvariable and TransformListVariable to store a list of GameObjects and Transforms in
Blackboard.

Fixed

o Fixed a bug where the IntelligenceAsset did not save when changing Input to None.
o Fixed deserializing failed when a property value was null

o Fixed a bug where VariableReferences of Inputs had a null Blackboard at runtime.

1.0.10

Added

e Added cetvariable<Tvalue>() function for the Blackboard. You can use this function to retrieve Blackboard
variables from other places.

public void TestBlackboard()

{
var blackboard = characterFacade.Entity.Intelligence.Blackboard;
var sightRadiusVariable = blackboard.GetVariable<float>("SightRadius");
sightRadiusVariable.Value = 30;
}
Fixed

¢ Fixed an issue that caused MomentumBonus to not work at runtime.

. , . Page 127
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 128 / 153

1.0.9
Changed

» In Unity 6, Unity has fixed the bug that prevented DropdownField choices from being nested. Therefore, we've
updated our DropdownFields to include nested choices. If you use Unity 6, you will see some DropdownFields
that have nested choices like this:

@ity Intelligence H
Data Version: 1
Considerations Inputs

Reorderable
Name Has No Target
Input
Name
Input Normalization
Type
Response Curve Float MyDistanceToEnemy

CharacterState MyDistanceToHealthStation

CREATE NEW MyDistanceToEnergyStation

Input
o & 2 0

1.0.8
Changed

» Refactored 1nput and TargetFilter .
o [Breaking] Renamed IsLessThanOrEqualvalueNormalization S tO IsLessThanOrEqualToValueNormalization S

. [Breaking] Renamed 1sGreaterThanOrEqualValueNormalization S tO IsGreaterThanOrEqualToValueNormalization S

Breaking Changes

Sorry, ifyou are using IsGreaterThanOrEqualValueNormalization S OF IsLessThanOrEqualvalueNormalization S, after upgrading
to 1.0.8, you need to edit Intelligence Data to update these class names by using File Toolbar Menu.

Fixed

o Fixed an issue where the consideration editor did not update properly when removing an input from InputTab.

1.0.7
Fixed

o Fixed an issue where adding multiple target filters did not work

. , . Page 128
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v1/nested-dropdown.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v1/nested-dropdown.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 129 / 153

1.0.6

Added

» Added Ids for Views
Fixed

o Fixed an issue where list items could be renamed to an empty string.

o Fixed anissue where only the selected consideration would update the new input name when renaming an
input.

o Fixed issues where only the selected decision would update the new consideration name when renaming a
consideration, and the new target filter name when renaming a target filter.

1.0.5
Changed

o Group these classes under the menu: AddComponent/CarlosLab.
o UtilityWorldController
o UtilityAgentController
o UtilityAgentFacade
o UtilityEntityController
o UtilityEntityFacade

o Separate the ChargeStations from Environment prefab in demos.

1.0.4

Added

o Added variable classes to store GameObject and Transform.
Fixed

¢ Fixed an issue where custom variables could not be referenced in the Editor.

1.0.3
Added

» Added Momentum Bonus to reduce the oscillation between nearly equal decision-target pairs.

. , . Page 129
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 130 / 153

1.0.2

Added

e Atoggle to enable/disable Compensation Factor.
Changed

« Removed Consideration Benchmarks.

1.0.1
Added

¢ Consideration Benchmarks.

 InfluenceCurve Benchmarks.

Changed

» Select the first decision maker if all decision makers return a score of 0.
Fixed

» Fixed the issue where the state of a decision maker was incorrect when exiting/entering.

o Fixed the issue where the Editor did not select the correct decision when adding or removing decision makers,
decisions and considerations.

1.0.0

First release

. , . Page 130
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 131 / 153

Release Notes - v2

2.2.6

Changed

e Updated Documentation.pdf

Fixed

o Fixed the issue where decisions without targets were run once per target. Now, they are only run once per

decision-making update.

Caution

This update has changed some file names, so you must delete the old packages before upgrading. Check
UpgradeGuide for instructions on how to upgrade.

Changed
e Unregistered NormalizedInputChanged in the InputNormalizationItemViewModel because it was unnesssary
Fixed

o Fixed a build error caused by including editor-specific code (EnumFlagsField) in the build process.

2.2.3
Changed

e Unbound cell items in ListViews.

Fixed

o Fixed issue where asset = null when exiting Play Mode and entering Edit Mode

« Fixed bug where the Consideration tab wasn't updating the response curve.

2.2.2

Changed

o Added support for Enums with the Flagsattribute .

. , . Page 131
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 132 / 153

o Improved capturing of values from input fields (IntegerField, FloatField, Vector3Field, etc.) used for undo/redo
functionality.

2.2.1
Added
e Added a new example to demonstrate the Entity Lifecycle. After upgrading, ensure to update the example

scenes to access it.

o Added lifecycle event functions to EntityFacade . You can override these functions to receive notifications when
lifecycle events occur.

e EntityFacade.OnRegistered()

e EntityFacade.OnUnregistered()
e EntityFacade.OnActivated()

e EntityFacade.OnDeactivated()
e EntityFacade.OnEnabled()

e EntityFacade.OnDisabled()

e EntityFacade.OnDestroyed()

o Added support for GameObject.SetActive and GameObject.Destroy . Starting from v2.2.1, you can safely call these
functions outside of action tasks. However, if you need to activate/deactivate/destroy utility entities within
action tasks, you still have to use EntityFacade.SetActive and EntityFacade.Destroy . These functions will be
queued to run after all action tasks have executed.

o Added functions that should be used from outside of action tasks. They will be run immediately without
queueing.

e EntityController.RegisterImmediate()

e EntityController.UnregisterImmediate()
e EntityController.SetEnableImmediate()
e EntityController.EnableImmediate()

e EntityController.DisableImmediate()

e EntityFacade.RegisterImmediate()

e EntityFacade.UnregisterImmediate()

e EntityFacade.SetEnableImmediate()

e EntityFacade.EnableImmediate()

e EntityFacade.DisableImmediate()

Changed

o Group built-in Blackboard variables into categories by using the category attribute.

Page 132

Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 133 / 153

Fixed

» Fixed a build error caused by including editor-specific code in the build process.

2.2.0

Breaking Changes

This version may break your project, so please back up your project before upgrading. Note that you should delete
the old package folders first.

New Features

o Added a Lock Button to the Intelligence Editor to lock the editor window on a specific Utility Agent,
preventing changes when clicking on another Utility Agent or GameObjects.

o Added JSON Attributes to rename fields, classes and namespaces in serialized JSON:
» ClassFormerlySerializedAs
o FieldFormerlySerializedAs

o Added Field Attributes to show/hide and group fields in the Intelligence Editor:

e ShowIf

HideIf
e FoldoutGroup
e BoxGroup

o Added a Category Field to Inputs, Input Normalizations, Considerations, Target Filters, Decisions, Blackboard
Variables to group them into categories in the Intelligence Editor.

Added

o Added the ability to close the Intelligence Editor by pressing the Escape button (Thanks David).

» Added the ability to rename list items (Decision Makers, Decisions, Considerations, ...) by pressing the F2
button.

o Added support for categoryattribute in Target Filters and Blackboard Variables.
Changed

» Improved Ul styles of Inteligence Editor (both Dark theme and Light theme).

e Moved CategoryAttribute from namespace CarlosLab.UtilityIntelligence.Attributes tO namespace

CarlosLab.Common.Attributes .

Fixed

. , . Page 133
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 134 / 153

» New Decision Makers, Decisions, Considerations, etc., cannot be created the first time after creating new

Intelligence Assets.

e The Runtime Editor does not display the correct runtime theme.

2.1.1

Fixed

o Fixed a bug where the Data Version Not Compatible popup appears when clicking on a newly created Utility
Intelligence Asset in Unity 6

2.1.0

New Features

» Add a new feature: Decision Making Batch Processing.

Added

o Added these new methods to safely activate/deactive utility entities.

EntityController.SetActive(bool active)
EntityController.Activate()
EntityController.Deactivate()
EntityFacade.SetActive(bool active)
EntityFacade.Activate()

EntityFacade.Deactivate()

o Added these new methods to safely enable/disable utility entities.

o Added these properties to retrieve information about utility entities:

EntityController.SetEnabled(bool enable)

EntityFacade.SetEnabled(bool enable)

EntityController.IsRegistered
EntityController.IsActive
EntityController.IsEnabled
EntityController.IsDestroyed
EntityFacade.Id
EntityFacade.IsRegistered
EntityFacade.IsEnabled

EntityFacade.IsDestroyed

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 134

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 135/ 153

o Added EntityFacade.DestroyAfter() to destroy entities with a delay.

Changed

o Updated UtilityAgentSpawner example : Increased the map size to spawn hundreds of agents for testing the
decision-making batch processing.

o Updated pocumentation.pdf to the newest version.

« Removed the ability to enable/disable utility entities through Gameobject.SetActive() because it is not safe when
called from action tasks. Instead, use EntityController.SetActive() OF EntityFacade.SetActive() .

o Set the execution order of world controllers to -1e0 to make it run before all other scripts.

e Restricted names of target filters, decision makers, decisions, considerations, inputs, and input normalizations
to allow only letters, numbers, underscores and and a maximum length of 64 characters.

e Renamed wWorld.ActiveEntities tO World.EnabledEntities

¢ Renamed UtilityWorld.ActiveAgents tO UtilityWorld.EnabledAgents
o Exposed utilityWorld.EnabledAgents as a public property

e Changed the text of serialized generic types:

e 2.0.x:
CarlosLab.Common.VariableReference 1[[System.Int32]]
« 2.1.0:

CarlosLab.Common.VariableReference 1[System.Int32]

Fixed

» Fixed a bug where enabling/disabling utility entities from action tasks could break the decision-making process
by throwing InvalidOperationException: Collection was modified;

» Fixed a bug where disabling an agent did not abort its current decision, causing it to continue running the
decision’s action tasks.

o Fixed a bug where variablereference With an array value type could not be serialized.
Removed

+ Remove the FrameworkVersion from UtilityIlntelligenceModels because it was unnecessary.

Backup your project before upgrading!

Please backup your project before upgrading. This version changes how generic types are serialized. Although it is
automatic, it might still cause unexpected issues for unforeseen reasons.

. , . Page 135
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 136 / 153

@ Note

For those using Gameobject.SetActive() to activate/deactivate utility entities, you have to switch to using
EntityController.SetActive() OF EntityFacade.SetActive() instead to safely activate/deactivate utility entities.

2.0.4

Added

o Added ScriptableObjectVariable and ScriptableObjectListVariable to store ScriptableObjects in Blackboard.
Improved

o Improved TargetFilters’ performance.

Changed

» Disabled clearing of the Utility Intelligence Editor when selecting a non-agent GameObject.

Fixed

o Fixed a bug where the current decision does not break its current action to switch to the best decision when
the “Keep Running Until Finished” option is not ticked.

2.0.3
Added

o Added a bunch of new basic inputs that retrieve values from Blackboard:

o Basiclnputint

e BasiclnputBool

o BasiclnputFloat

e BasiclnputDouble

e BasiclnputLong

e BasiclnputVector2

e BasiclnputVector3

o BasiclnputVector2int

. , . Page 136
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

e BasiclnputVector3int
& Utility Intelligence
ctility Intelligence

File v

Int
Inputs
Reorderable
NEINE

RaycastToTarget

AttackCooldownElapsedTime

Name

T

Basic

Examples

Bool

Float

INnput Norn

BasiclnputBool
BasiclnputDouble
BasiclnputFloat
Basiclnputint
BasiclnputLong
BasiclnputVector2
BasiclnputVector2Int
BasiclnputVector3
BasiclnputVector3Int

Utility Intelligence - Documentation 137 / 153

Inputs

o Added a PDF version of the documentation, so you can now read it offline without needing an internet

connection.

Utility Intelligence: A Robust And Powerful Utility Al Framework

Page 137

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/basic-inputs.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/basic-inputs.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 138 / 153

Utility Intelligence: Documentation - PDF (v2) | Utility Al Framework for Unity ...

Fixed

» Fixed a bug where the framework could not deserialize inputs if their values types were changed, such as from
Input<bool> EO Input<float>.

2.0.2
Fixed

o Fixed bug where the File Menu Toolbar could not be used because the Data Version is Not Compatible popup
showed repeatedly if the data version of Utility Intelligence Assets was older than the framework.

o Fixed NullReferenceException that occurred when agents made decisions at runtime if the decision list of
decision makers was empty.

» Fixed NullReferenceException that occured when using the File Menu Toolbar without selecting a Utility
Intelligence Asset.

Removed

« Removed the FrameworkVersion from Utility Intelligence Assets because it was unnecessary.

2.0.1

Fixed

. , . Page 138
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://www.youtube.com/watch?v=NtkYrrIC_Uw
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 139 / 153

o Fixed a bug where removing a consideration in the ConsiderationTab did not clear the ConsiderationView in
the IntelligenceTab and caused a NullReferenceException iN InputNormalizationViewIntelligenceTab and

InputValueViewIntelligenceTab When trying to access the removed consideration view model.

» Fixed a bug where removing in the DecisionTab did not clear the ActionTaskView in the IntelligenceTab

2.0.0

0 Note

Starting with v2, this plugin has been moved from the Assets folder to the Packages folder to manage
dependencies and track versions more easily.

To upgrade from v1 to v2, please read the Upgrade Guide.
New Features

» Add a new feature: Runtime Editor

Added

e Added a lot of new ExampleScenes.
o Added two new tabs to the Intelligence Editor: Decision Tab and Input Normalization Tab

« Added HasNoTarget and EnableCachePerTarget toggles for decisions, considerations, input normalizations
and inputs to enable caching of their calculated results, thereby eliminating unnecessary recalculations.

o Supported serializing LayerMask. Starting from v2, you can edit all Layermask fields in the Utility Intelligence
Editor, and all the changes will be serialized to JSON and saved to Utility Intelligene Asset.

Decisions Target Filters Conside Input Normalizations Inputs

Targetinput

Name

MyHealth Per Target

Default
Normal g

downElapsedTime 0 1

eToTarget 0 SightRadius
RaycastToTargetlnput -

Name

Type

e Added NavMeshAgentVariable and AnimatorVariable to store NavMeshAgent and Animator in Blackboard
o Added categoryAttribute to categorize the action tasks, inputs and input normalizations.
e Added Blackboard.TryGetVariable()

o Added these new methods to safely Enable/Disable utility entities.

. , . Page 139
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/serialize-layer-mask.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/serialize-layer-mask.png
https://utilityintelligence.carloslab-ai.com/Documentation/

e EntityController.Enable()

e EntityController.Disable()

e EntityFacade.Enable()

e EntityFacade.Disable()

o Add some new target properties to the action tasks:

o TargetFacade

e TargetAgent

o TargetEntity

e TargetTransform

o TargetGameObject

» Added a lot of new classes to the built-in library:

e Action Tasks

e Animator

SetBool
SetFloat
Setinteger
SetTrigger

WaitUntilAnimationFinished

» NavMeshAgent

ChaseTarget
MoveAwayFromTarget

Patrol

¢ FaceTarget

¢ FaceTargetForever

e StartCooldown

¢ Inputs

o CooldownElapsedTimelnput

e RaycastToTargetinput

o Input Normalizations

¢ IsInCooldownNormalization

o Added DecisionInfo prefab to show which decision has been chosen.

Improved

Utility Intelligence: A Robust And Powerful Utility Al Framework

Utility Intelligence - Documentation 140 / 153

Page 140

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 141 / 153

o Improved performance when calling Unity Event Functions in action tasks. Previously, they were called for all
the action tasks across all decisions. Currently, we only call them for the action tasks of the chosen decision.

o LateUpdate

o FixedUpdate

» OnCollisionEnter
e OnCollisionStay

¢ OnCollisionExit

o (Categorize the inputs, input normalizations based on its input value type and categoryattribute . Note that the
CategoryAttribute Will take priority.

& Utility Intelligence o

Data Version: 2 Framework Version: 1.1.0
Target Filters Considerations Input Normalizations Inputs
rmalizations DivideByMaxValueNormalizationint
ble
Has No T
MyHealth % nable he Per Target

100

Input
MyHealth
0

Comparison IsGreaterThanOrEqualToValueNermalizationFloat

Division IsGreaterThanOrEqualToValueNormalizationint

Examples IsLessThanOrEqualToValueNormalizationFloat

Range IsLessThanOrEqualToValueNormalizationint

Float

y , . Page 141
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/input-normalization-categories.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/input-normalization-categories.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 142 / 153

o (Categorize the action tasks based on its categoryAttribute .

® Utility Intelligence (u]

ntelligence

Data Version: 2 Framework Version: 11.0

Decisions Target Filters ons Input Normalizations
Decision
e
HealthStationFilter
. Animator SetBool
MoveToHealthStation

Name Examples SetFloat

NavMeshAgent SetInteger
Actions Test SetTrigger
Running Until Finig DestroySelf WaitUntilAnimationFinished
FaceTarget
A pnse Curve
FaceTargetForever
Idle

Log

Score

MoveTowardsTarget

RandomWait
ParallelComplete
StartCooldown

Type Wait Input
. 0
Considerations
Reorderable
Name

IsNotBeingAttacked

Name

» Auto save the widths of the panes in the Utility Intelligene Editor after they have been resized.

Changed

e The Momentum Bonus is no longer fixed at 25%. Now, you can adjust it as desired.
B Utility Intellic
@ity Intelligence
File v

Intelligence

Compensation Factor

Momentum Bonus

Decision Makers

Reorderable

Name

Name

e« Renamed

y , . Page 142
Utility Intelligence: A Robust And Powerful Utility Al Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/action-tasks-categories.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/action-tasks-categories.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/momentum-bonus.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/momentum-bonus.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 143 / 153

® NavMeshMoveTowards £O MoveToTarget
e MyDistanceToTargetInput LO DistanceToTargetInput
e MoveTowards tO MoveTowardsTarget

Serialization: When changing type of properties in Inputs, InputNormalizations, ActionTasks and TargetFilters,
their values will be reset to the default value of their types.

Disable Runtime Editing of Decisions, Considerations for safety purposes, as they are prone to errors.

Disable preview of consideration info when it is discarded in Editor mode.

Fixed

Fixed a bug where the UtilitylntelligenceEditor did not clear the view when exiting Runtime Mode

Fixed a bug where renaming a consideration in the Consideration Tab did not update the new consideration
name in Decision Tab and Intelligence Tab.

Fixed a bug where renaming a target filter in the Target Filter Tab did not update the new target filter name in
Decision Tab and Intelligence Tab.

Fixed a bug where renaming and removing a Blackboard variable in the Blackboard Tab did not update the
variable references in inputs, input normalizations, target filters and decision tasks.

Fixed a bug where we cannot undo or redo the ActionExecuteMode after it has been changed.

Fixed the delay when transitioning between decisions and action tasks when they are running in sequence.

N _ . Page 143
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 144 / 153

FAQSs

y _ . Page 144
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 145/ 153

FAQs

Why use Utility Intelligence

| created a page to explain the benefits of using Utility Intelligence over other tools on the market. You can
check it out here: Why Use Utility Intelligence?

Which Unity version is supported?

Utility Intelligence is designed for Unity 6 and later. It uses the UlIToolkit Runtime Binding System introduced
in Unity 6 to build the Intelligence Editor using the MVVM pattern, which allows it to function not only in the
Editor but also at runtime in builds. Therefore, Unity 6 and higher is required.

How to get support?
Currently, there are 3 ways to get support:

1. Official Support
e Join my community and post your questions there: Join Us On Discord.
« This requires you to verify your InvoiceNumber (Orderld) first to gain access to the private channels.
o This is the recommended way to get support because:

» You can find instant answers to your questions by searching through old posts if someone has already
asked the same questions as you.

o Your questions also help others, as they won’t need to ask the same questions again.

» You will get faster answers than by sending support requests via email.

e Send an email to support@carloslab-ai.com, and don't forget to include your Invoice Number (Orderid).

¢ Only use this if you really don't like using Discord.

2. Community Support

¢ If you don't want to wait for offcial support, you can ask for support from the community. You can post
your questions on:

» Unity Discussions: Utility Intelligence: A Robust And Powerful Utility Al Framework.

o The community-support channel in our Discord server.

Why you should join our community on Discord

N _ . Page 145
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://www.youtube.com/watch?v=C6oSn0DkdXg
https://discord.gg/vRFEK5uE3f
mailto:support@carloslab-ai.com
https://discussions.unity.com/t/released-utility-intelligence-a-user-friendly-utility-ai-framework/940124/
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 146 / 153

» We have a dedicated channel for sharing knowledge about using Utility Intelligence (knowledge-base), where
you can both share and learn from others in our community.

o Additionally, | will add all valuable content in the channel to our documentation. This will give your Al
Assistant a more extensive knowledge base about Utility Intelligence, making it smarter. This benefits
everyone.

o We have a dedicated channel for receiving feedback from users, where you can send feedback to us. If it is
reasonable and within our capabilities, we'll make improvements to our framework based on your suggestions.

e You can ask for support either from us (official) or from the community.

» You can find instant answers to your questions by searching through old posts, without having to wait for
support.

» You will get faster responses than by asking via email.

N _ . Page 146
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 147 / 153

Why use Utility Intelligence?

High-quaility documentation

The documentation is written with care and is regularly improved to help you learn Utility Intelligence as easily
as possible.

Besides the online version, we also have a PDF version for offline reading. You can feed it to any Al chatbot, and
then ask it any questions you have about Utility Intelligence.

-> No more struggling with low-quality documentation that makes you feel frustrated and wastes your time.

o Online: https://utilityintelligence.carloslab-ai.com/Documentation/
o OFfline: https://utilityintelligence.carloslab-ai.com/assets/Documentation/Documentation.pdf

| created this video to show you how to learn Utility Intelligence with DeepSeek. | like it because its deep
thinking mode is incredible. If you don’t like DeepSeek, you can use any other Al chatbot you prefer.

But don't forget to share your knowledge about Utility Intelligence in the channel: knowledge-base on our
Discord server. | will select the most valuable content to include in our documentation. This will give your Al
Assistant a larger knowledge base and be smarter.

Learning Utility Intelligence With DeepSeek

Utility Al is better than Behavior Trees and Finite State Machines

N _ . Page 147
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/
https://utilityintelligence.carloslab-ai.com/assets/Documentation/Documentation.pdf
https://www.youtube.com/watch?v=iU1p2Y478mY
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 148 / 153

I've written an article to explain why Utility Al is better than Behavior Trees and Finite State Machines for
creating game Als, you can read it here: Why use Utility Al instead of Behavior Trees and Finite State Machines to

create Als for your games.

Easy to debug

If you use Behavior Trees or Finite State Machines as your decision-making solution, you might find it hard to
debug why your agents make wrong decisions at runtime as complexity increases.

with Utility Intelligence, you can preview which decision is chosen by modifying input values, such as health,
energy, distance to target, and attack cooldown, directly in the Editor, without having to play the game.

Feature: Status Preview (v2)

Easy to maintain and scale

if you use Behavior Trees or Finite State Machines for decision-making, the cost of maintaining the behavioral
structure will increase as the complexity of Al Behaviors increases. It is because the temporal coupling between
decisions.

In Utility Intelligence, we use Utility Al for decision-making, which means decisions are made based on their
scores. Therefore, there is no coupling between decisions, and they are independent of each other.

-> |t's easy to add, remove and change decisions, as well as adjust decision-making by tweaking the decision
scores, without worrying about causing significant changes to the behavioral structure, as in Behavior Trees
and Finite State Machines.

-> This ensures that your Al system remains manageable and scalable as its complexity increases.

N _ . Page 148
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/
https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#hard-to-debug
https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#hard-to-debug
https://www.youtube.com/watch?v=N2QVn5GaklA
https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#temporal-coupling-between-decisions
https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#temporal-coupling-between-decisions
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 149 / 153

Boost team productivity

Since decisions are made based on their scores, designers can adjust decision-making by tweaking the decision
scores, without needing support from developers to change the behavioral structure, as required in Behavior
Trees and Finite State Machines.

-> Designers and developers can work independently without affecting each other.

o Designers: Focus on adjusting the decision scores to ensure the best decision is chosen in any situation.

» Developers: Focus on creating and executing new decisions based on the game design document.

Higher Performance

Utility Al allows us separate decision-making from decision-execution, turn them into two distinct processes,
and run each process at a different frequency.

For example, we can run the decision-execution process every frame while running the decision-making process
only every 0.1s or every 0.5s by adjusting the decision-making interval to suit your game’s needs.

Moreover, you can even distribute the decision-making process across multiple frames to balance the workload, or
manually run the decision-making process when necessary. This approach significantly improves your game's
performance.

This is difficult to achieve if you use Behavior Trees (Finite State Machines) because decision-making is closely
tied to decision-execution by nature in these systems and it's hard to separate.

An intuitive and powerful Editor

We offer an intuitive and powerful Editor with many robust features that allow you to create complex Al
Behaviors and Logic with ease:

o Status Preview: Preview the score of each decision and which decision is chosen based on the input values and
response curves directly in the Editor, without having to play the game.

o Consideration Editor: See how the input and the response curve will affect the consideration score without
having to visualize it in your head.

o JSON Editing: Manually edit the Intelligence Data in JSON format using your Text Editor then import it to the
Intelligence Asset

e Runtime Status: View the current status of multiple components during runtime. It is similar to Status
Preview but includes additional runtime information, such as the best target for each decision, and the current
status of considerations and action tasks.

o Runtime Editing: Tweak your Al Behaviors during runtime for testing purposes without having to replay the
game.

« Runtime Editor: The Utility Intelligence Editor can function both at editor time and at runtime in builds.
This feature enables users to adjust variables in the Utility Intelligence Editor to observe how they affect the

N _ . Page 149
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#decision-making-is-forced-to-run-at-the-same-frequency-as-decision-execution
https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#decision-making-is-forced-to-run-at-the-same-frequency-as-decision-execution
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 150 / 153

agent’s decisions for testing purposes in builds.

» Lockable Editor: Lock the Intelligence Editor on a specific Utility Agent, allowing users to modify variables
from other Game Objects through the Inspector Window and see how they affect the decision scores in the
Intelligence Editor.

» Field Attributes: Show/hide and group your fields in the Intelligence Editor.

o Dark & Light themes: The Utility Intelligence Editor supports both Dark and Light themes and will
automatically match the theme of the Unity Editor.

Many example scenes

We offer many example scenes to show you how to use Utility Intelligence to create Als for your games:

o StraightArrowOnly

o StraightArrow vs CurvedArrow

o Chaser vs Evader

o Chaser & Patrol vs Evader & FindEnemy
e Swordsman vs Swordsman

¢ Axeman vs Axeman

e Archer vs Swordsman

» Crossbowman vs Swordsman

e Teamvs Team

e Runtime Editor

Many built-in components

We offer many built-in components to help you create game Als more easily and quickly, saving you a significant
amount of time:

o Built-in Inputs

Built-in Input Normalizations

Built-in Action Tasks

Built-in Target Filters

Built-in Blackboard Variables

Many optimization tricks

We offer many optimization tricks to help you discard unnecessary calculations and improve your Al's
performance:

. , . Page 150
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 151 / 153

» Discard considerations if the decision cannot possibly beat the other ones.
» Discard decisions, decision makers if they cannot possibly beat the other ones.

o Cache the calculated results from inputs, input normalization, considerations, decisions and reuse them in
other places.

o Adjust the decision-making interval, such as 0.1s or 0.5s, depending on your game’s needs.

o Distribute the decision-making task across multiple frames to balance the workload, reduce computational
burden per frame, and avoid performance spikes.

Many oscillation reduction tricks

We offer many oscillation reduction tricks to minimize the oscillation between decisions:

¢ Momentum Bonus
o Decision Weight

» Keep running the decision tasks until they are finished

. , . Page 151
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 152 / 153

Special Thanks

This framework is inspired by these projects:

1. Infinite Axis Utility System (Dave Mark). For more information about it, you can watch his presentations
here.

2. Curvature (Mike Lewis)

Special thanks to Dave Mark, and Mike Lewis for their inspiring work.

Third Party Notices

Framework

This framework uses some components from the following projects:

1. Curvature (Mike Lewis)
- Component: ResponseCurve.cs
- Url: https://github.com/apoch/curvature/
- License: BSD-3

2. Trove (PhilSA)
- Component: CurveDrawerElement.cs
- Url: https://github.com/PhilSA/Trove/
- License: MIT

Many thanks to Mike Lewis, and PhilSA for creating these excellent tools.

Example Scenes
This package uses the following assets to create example scenes:

1. KayKit - Character Pack : Adventurers (Kay Lousberg)
- Url: https://kaylousberg.itch.io/kaykit-adventurers
- License Type: CCO

2. KayKit - Dungeon Remastered Pack (Kay Lousberg)
- Url: https://kaylousberg.itch.io/kaykit-dungeon-remastered
- License Type: CCO

3. KayKit - Character Pack : Skeletons (Kay Lousberg)
- Url: https://kaylousberg.itch.io/kaykit-skeletons
- License Type: CCO

4. KayKit - Mini Game Variety Pack (Kay Lousberg)
- Url: https://kaylousberg.itch.io/kay-kit-mini-game-variety-pack

. , . Page 152
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://github.com/apoch/curvature
https://github.com/apoch/curvature/
https://github.com/PhilSA/Trove/
https://kaylousberg.itch.io/kaykit-adventurers
https://kaylousberg.itch.io/kaykit-dungeon-remastered
https://kaylousberg.itch.io/kaykit-skeletons
https://kaylousberg.itch.io/kay-kit-mini-game-variety-pack
https://utilityintelligence.carloslab-ai.com/Documentation/

Utility Intelligence - Documentation 153 / 153

- License Type: CCO

5. RPG Audio (Kenney)
- Url: https://kenney.nl/assets/rpg-audio
- License Type: CCO

6. Impact Sounds (Kenney)
- Url: https://kenney.nl/assets/impact-sounds
- License Type: CCO

7. 3D Game Kit (Unity)
- Component: Audios
- Url: https://assetstore.unity.com/packages/templates/tutorials/unity-learn-3d-game-kit-115747
- License Type: Unity Companion License

8. Dragon Crashers (Unity)
- Component: Audios
- Url: https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-urp-2d-sample-
project-190721
- License Type: Unity Companion License

Many thanks to Kay Lousberg, Kenny, and the Unity Asset Team for creating these excellent assets.

. , . Page 153
Utility Intelligence: A Robust And Powerful Utility Al Framework

https://kenney.nl/assets/rpg-audio
https://kenney.nl/assets/impact-sounds
https://assetstore.unity.com/packages/templates/tutorials/unity-learn-3d-game-kit-115747
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-urp-2d-sample-project-190721
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-urp-2d-sample-project-190721
https://utilityintelligence.carloslab-ai.com/Documentation/

