
Page 1

Online Documentation
Note: We don't update the offline version frequently because it's time-consuming. Therefore,

if possible, refer to the online version for the best experience. It's always up to date.

Welcome to the Documentation Hub
Hope you have a great experience with Utility Intelligence!🥰

Utility Intelligence - Documentation 1 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/
https://bsky.app/profile/carlos-ai.bsky.social
https://bsky.app/profile/carlos-ai.bsky.social
https://x.com/_carlos_ai
https://x.com/_carlos_ai
https://www.youtube.com/@CarlosLab
https://www.youtube.com/@CarlosLab
https://links.carloslab-ai.com/RzqkVY
https://links.carloslab-ai.com/RzqkVY
https://discord.gg/vRFEK5uE3f
https://discord.gg/vRFEK5uE3f
mailto:contact@carloslab-ai.com
mailto:contact@carloslab-ai.com
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 2

Table of Contents

Documentation

Overview

What is Utility Intelligence?

How Utility Intelligence works

Getting Started

Installation

Quick Start

Example Scenes

Other Learning Resources

Texts

Videos

Example Scenes

Importing example scenes

Running examples in URP and HDRP

URP

HDRP

Utility World

Utility World

Utility Entity
Transforming GameObjects into Utility Entities

Registering Utility Entities

Getting Utility Entities

Entity Lifecycle

Utility Agent

Transforming GameObjects into Utility Agents

Utility Intelligence

Utility Intelligence

Utility Intelligence Asset

Utility Intelligence Data

Intelligence Editor
Editor Mode

Toolbar

Utility Intelligence - Documentation 2 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 3

Runtime Mode

Lock the Editor

Tabs

Intelligence Tab

Decision Tab

Target Filter Tab

Consideration Tab

Input Normalization Tab

Input Tab

Blackboard Tab

Decision Makers

Understanding how the decision-making process works

Creating Decision Makers

Decision Maker Statuses

Decisions

Understanding how decisions work

Decisions are scored per target

Oscillation between decision-target pairs

Has No Target

Decision Weight

Momentum Bonus

Creating Decisions

Decision Statuses

Target Filters

Creating Target Filters

Adding Parameter Fields

Supported Field Types

Built-in Target Filters

Action Tasks

Execution Modes

Max Repeat Count

Keep Running Until Finished

Creating Action Tasks

Adding Parameter Fields

Supported Field Types

Action Task Statuses

Built-in Action Tasks

Properties and Functions

Utility Intelligence - Documentation 3 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 4

Properties

Functions

Considerations

Understanding how considerations work

Compensation Factor

Creating Considerations

Consideration Statuses

Response Curves

Inputs

Creating Inputs

Supported Value Types

Adding Parameter Fields

Supported Field Types

Built-in Inputs

Input Normalizations

Creating Input Normalizations

Supported Value Types

Adding Parameter Fields

Supported Parameter Types

Built-in Input Normalizations

Blackboard

Creating Variables

Supported Value Types

Referencing Variables

Built-in Variables

Tips & Tricks

Tips & Tricks

General Tips & Tricks

Ask AI ChatBots

Use GitHub Copilot

Other Tips & Tricks

Intelligence Editor

Use Status Preview

Lock the Intelligence Editor

Group your components into categories

Organize Fields in the IntelligenceEditor

Utility Intelligence - Documentation 4 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 5

Change class names and field names in JSON

Considerations

Common Consideration Recipes

Distance

Is(StateName)State

Is(Not)InCooldown

Random

Health

Idle

Which ResponseCurve should you use?

Decisions

Enable Compensation Factor

Enable KeepRunningUntilFinished

Use MomentumBonus

Add Fallback Decision

Use Decision Weight

Use empty TargetFilter list for Decisions that target all Entities

How Tos
How to enable/disable a decision based on a condition?

How to enable/disable decisions based on states

How to add some randomness to a decision?

How to reduce the oscillation of scores between decision-target pairs

Decision Makers

Character Transformation

Utility Worlds
Create separate worlds for different purposes

Optimization Tricks

Optimizing the decision-making process

Adjust the decision-making interval

Distribute the decision-making task across multiple frames

Create separate worlds for different purposes

Optimizing the score-calculation process

Understanding how the process works

How to optimize the process

Supported Types
Supported Value Types

Supported Field Types

Utility Intelligence - Documentation 5 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 6

Attributes

JSON Attributes

ClassFormerlySerializedAs

FieldFormerlySerializedAs

Field Attributes

BoxGroup & FoldoutGroup

ShowIf & HideIf

Category Attribute

Categories

Category Attribute

Category Field

Upgrade Guide

General Upgrade Guide

Upgrading from v1 to v2

Intelligence Asset

Source Code

Release Notes

Release Notes - v1

1.0.11

1.0.10

1.0.9

1.0.8

1.0.7

1.0.6

1.0.5

1.0.4

1.0.3

1.0.2

1.0.1

1.0.0

Release Notes - v2
2.2.6

2.2.4

2.2.3

2.2.2

2.2.1

2.2.0

Utility Intelligence - Documentation 6 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 7

2.1.1

2.1.0

2.0.4

2.0.3

2.0.2

2.0.1

2.0.0

FAQs

FAQs
Why use Utility Intelligence

Which Unity version is supported?

How to get support?

Why you should join our community on Discord

Why use Utility Intelligence?

High-quaility documentation

Utility AI is better than Behavior Trees and Finite State Machines

Easy to debug

Easy to maintain and scale

Boost team productivity

Higher Performance

An intuitive and powerful Editor

Many example scenes

Many built-in components

Many optimization tricks

Many oscillation reduction tricks

Special Thanks

Third Party Notices

Framework

Example Scenes

Utility Intelligence - Documentation 7 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 8

Documentation

Utility Intelligence - Documentation 8 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 9

Overview

What is Utility Intelligence?

Utility Intelligence is a robust and powerful Utility-Based AI Framework. It allows agents to make decisions

based on scores. Therefore, designers can adjust the decision-making process by tweaking the decision scores,

without needing support from developers to change the behavioral structure, as required in Behavior Trees

and Finite State Machines.

-> Designers and developers can work independently without affecting each other.

Designers: Focus on adjusting the decision scores to ensure the best decision is chosen in any situation.

Developers: Focus on creating and executing new decisions based on the game design document.

How Utility Intelligence works

Here’s how Utility Intelligence works step by step:

1. Add decisions to the agent.

2. Score every decision based on the current situation.

3. Select the decision with the highest score.

4. Transition from the current decision to the selected decision.

5. Execute the action tasks of the selected decision sequentially or simultaneously.

Utility Intelligence - Documentation 9 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 10

Utility Intelligence - Documentation 10 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Overview/best-decision-behavior.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Overview/best-decision-behavior.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 11

Getting Started

Installation

1. From Unity Hub, sign in to the Unity account that you used to purchase Utility Intelligence.

2. Open your Unity project.

3. Open the Package Manager.

Utility Intelligence - Documentation 11 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/signin-unityhub.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/signin-unityhub.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 12

4. Select My Assets -> Utility Intelligence: A Robust And Powerful Utility AI Framework -> Download

Utility Intelligence - Documentation 12 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/open-package-manager.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/open-package-manager.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/download-utility-intelligence.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/download-utility-intelligence.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 13

5. Click on Import to Project

6. Enjoy exploring Utility Intelligence to develop your game AIs.

Quick Start

1. Firstly, you need to create a Utility Intelligence Asset by right-clicking in the Project Window and select

Create/CarlosLab/Utility Intelligence Asset.

2. Then double-click on the new Utility Intelligence Asset to open the Utility Intelligence Editor.

Utility Intelligence - Documentation 13 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/import-utility-intelligence.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/import-utility-intelligence.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 14

3. Add new Decision Makers, Decisions, Considerations to the intelligence asset.

4. Transform your AI GameObjects into Utility Agents and assign the Utility Intelligence Asset to the

Intelligence Asset field of the Utility Agent Controller

5. Transform all the Game Objects that your agents need to interact with into Utility Entities

Utility Intelligence - Documentation 14 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-agent.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-agent.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 15

6. Create a Utility World and register all the Utility Agents and Utility Entities in your game with it.

7. Play your game.

Example Scenes

Utility Intelligence - Documentation 15 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-entity.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-entity.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-world.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-world.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 16

For more information about the example scenes of this package, please visit: Example Scenes.

Other Learning Resources

Besides our documentation, there are other good learning resoures for Utility AI. You can learn a lot from them.

Texts

1. An Introduction to Utility Theory, David “Rez” Graham

2. Choosing Effective Utility-Based Considerations, Mike Lewis

3. Curvature’s Wiki, Mike Lewis

Videos

1. Architecture Tricks: Managing Behaviors in Time, Space, and Depth, Dave Mark (From 33:30)

2. Building a Better Centaur: AI at Massive Scale, Dave Mark and Mike Lewis

Utility Intelligence - Documentation 16 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.gameaipro.com/GameAIPro/GameAIPro_Chapter09_An_Introduction_to_Utility_Theory.pdf
https://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter13_Choosing_Effective_Utility-Based_Considerations.pdf
https://github.com/apoch/curvature/wiki
https://www.gdcvault.com/play/1018040/Architecture-Tricks-Managing-Behaviors-in
https://www.gdcvault.com/play/1021848/Building-a-Better-Centaur-AI
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 17

Example Scenes

We provide many example scenes to demonstrate how to use Utility Intelligence to create your own agents.

However, by default, these examples are not imported into your project to keep it clean. If you want to learn more

about Utility Intelligence through our examples, you need to import them into your project first.

Utility Intelligence: Example Scenes (v2) | Utility AI Framework for Unity GamUtility Intelligence: Example Scenes (v2) | Utility AI Framework for Unity Gam……

Importing example scenes

To import our example scenes to your project:

1. Open the Package Manager.

2. Select In Project -> Carlos Lab - Utility Intelligence.

3. Go to the Samples tab.

Utility Intelligence - Documentation 17 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.youtube.com/watch?v=dHXrdIGhrPM
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 18

4. Click the Import button.

Running examples in URP and HDRP

Since this plugin doesn’t have any graphical features, it is compatible with all render pipelines. However the

materials of the examples are created using the Built-In Render Pipeline. Therefore, if you want to run the

examples in URP or HDRP, you need to convert all materials to the target pipeline first:

URP

1. Open Render Pipeline Converter (Window -> Rendering -> Render Pipeline Converter).

2. Tick Material Upgrade.

3. Click Initialize and Converter button.

Or

1. Select all materials in our examples.

2. Click Edit -> Rendering -> Material -> Convert Selected Built-in Materials to URP.

HDRP

1. Open HDRP Wizard (Window -> Rendering -> HDRP Wizard).

2. Click Convert All Built-In Materials to HDRP.

Or

Utility Intelligence - Documentation 18 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/import-examples.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/GettingStarted/import-examples.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 19

1. Select all materials in our examples.

2. Click Edit -> Rendering -> Material -> Convert Selected Built-in Materials to HDRP.

Utility Intelligence - Documentation 19 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 20

Utility World

Utility Intelligence - Documentation 20 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 21

Utility World

A Utility World contains a collection of Utility Entities, and

the main roles of a Utility World are:

1. Handling the decision-making process of all Utility Agents inside the world.

2. Running the task associated with the chosen decision for all Utility Agents inside the world.

Utility Worlds manage their Utility Entities and Utility Agents independently, not related to each other.

So you can create multiple utility worlds for different purposes without having to worry about they will affect

each other.

To create a Utility World, right-click in the Hierarchy Window, then select CarlosLab/Utility World. Alternatively,

you can create it manually by creating a new Game Object and adding a Utility World Controller component to it:

The Utility World Controller will automatically create a Utility World when your game starts and manage it

throughout its lifetime.

You can optimize the decision-making process of each Utility World by adjusting the Decision Making Interval and

the Decision Making Batch Size.

Note

Tip

Utility Intelligence - Documentation 21 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-world.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-world.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 22

Utility Entity

A Utility Entity represents an object inside a Utility World, and only Utility Entities in the same world can interact

with each other. Therefore, if you want a GameObject to be the target of a Utility Agent, you need to do the

following:

1. Transform the GameObject into a Utility Entity

2. Register the Utility Entity with the same Utility World as the Utility Agent.

Transforming GameObjects into Utility Entities

To transform a GameObject into a Utility Entity, you need to attach these two components to it:

1. Utility Entity Facade

It is used to interact with the Utility Entity’s Game Object. For example, Target Filters can access the

Entity Facade of both itself and the target to retrieve information from the components of Game Objects

in order to check the validity of the target.

To create your own Entity Facade, you need to create a class inherited from UtilityEntityFacade . For

example:

public class OtherTeamFilter : TargetFilter

{

 protected override bool OnFilterTarget(UtilityEntity target)

 {

 if (target.EntityFacade is Character targetCharacter)

 {

 Character myCharacter = AgentFacade as Character;

 return myCharacter.Team != targetCharacter.Team;

 }

 return false;

 }

}

Utility Intelligence - Documentation 22 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 23

2. Utility Entity Controller

The main role of a Utility Entity Controller is to create and manage the Utility Entity’s lifecycle, including

initialization, destruction, registration, and unregistration with utility worlds.

Registering Utility Entities

public class ChargeStation : UtilityEntityFacade

{

 [SerializeField]

 private ChargeStationType type;

 [SerializeField]

 private float chargeRadius;

 [SerializeField]

 private float chargePerSec;

 public ChargeStationType Type => type;

 public float ChargeRadius => chargeRadius;

 public float ChargePerSec => chargePerSec;

}

Utility Intelligence - Documentation 23 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-entity.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-entity.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 24

A Utility Entity can only be associated with a single Utility World.

Therefore, it’s not possible to register a Utility Entity with multiple Utility Worlds.

To register a Utility Entity with a Utility World, you need to call the Register method of the

UtilityEntityController and pass the Utility World as the parameter. For example:

Getting Utility Entities

After being registered with a Utility World, the Utility Entity is allocated an Entity Id. This Id is unique within the

world, and you can get the entity from the world by calling UtilityWorldController.GetEntity() and passing the

Entity Id as the parameter of the method. For example:

It’s useful in case you want to access the entity from multiple places but don’t want to pass the entity object

everywhere.

Entity Lifecycle

Note

public class AgentsPlacedInSceneDemo : MonoBehaviour

{

 [SerializeField]

 private UtilityWorldController world;

 [SerializeField]

 private List<UtilityAgentController> agents;

 [SerializeField]

 private List<UtilityEntityController> chargeStations;

 private void Start()

 {

 foreach (UtilityAgentController agent in agents)

 {

 agent.Register(world);

 }

 foreach (UtilityEntityController chargeStation in chargeStations)

 {

 chargeStation.Register(world);

 }

 }

}

int entityId = entity.Id;

var entity = world.GetEntity(entityId);

Utility Intelligence - Documentation 24 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 25

In v2.2.1, I added these lifecycle event functions to EntityFacade . You can override these functions to receive

notifications when lifecycle events occur.

Additionally, v2.2.1 includes a new example to demonstrate the lifecycle of utility entities:

protected virtual void OnRegistered()

{

}

protected virtual void OnActivated()

{

}

protected virtual void OnEnabled()

{

}

protected virtual void OnDisabled()

{

}

protected virtual void OnDeactivated()

{

}

protected virtual void OnUnregistered()

{

}

protected virtual void OnDestroyed()

{

}

Utility Intelligence - Documentation 25 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 26

New Example: Entity Lifecycle (v2.2.1) | Utility AI Framework for Unity GameONew Example: Entity Lifecycle (v2.2.1) | Utility AI Framework for Unity GameO……

Since utility entities are managed by a utility world, performing the following actions within action tasks is unsafe

because they directly affect the utility world, which is also responsible for running action tasks:

Register/Unregister utility entities.

Activate/Deactivate utility entities.

Enable/Disable utility entities.

Destroy utility entities.

For safety, you should use these functions inside action tasks instead. They will be queued to run after all action

tasks have executed.

EntityController.Register()

EntityController.Unregister()

EntityController.SetActive()

EntityController.Activate()

EntityController.Deactivate()

EntityController.SetEnable()

EntityController.Enable()

EntityController.Disable()

EntityController.Destroy()

Or:

Utility Intelligence - Documentation 26 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.youtube.com/watch?v=faTVsr9hZDU
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 27

EntityFacade.Register()

EntityFacade.Unregister()

EntityFacade.SetActive()

EntityFacade.Activate()

EntityFacade.Deactivate()

EntityFacade.SetEnable()

EntityFacade.Enable()

EntityFacade.Disable()

EntityFacade.Destroy()

If it is outside of action tasks, you can use these functions instead. They will be run immediately without queueing.

EntityController.RegisterImmediate()

EntityController.UnregisterImmediate()

EntityController.SetEnableImmediate()

EntityController.EnableImmediate()

EntityController.DisableImmediate()

Or:

EntityFacade.RegisterImmediate()

EntityFacade.UnregisterImmediate()

EntityFacade.SetEnableImmediate()

EntityFacade.EnableImmediate()

EntityFacade.DisableImmediate()

And:

GameObject.SetActive

GameObject.Destroy

Utility Intelligence - Documentation 27 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 28

Utility Agent

A Utility Agent is a special Utility Entity that helps your AI make the right decision based on the current situation,

and controls it to perform the Action Tasks attached to the chosen decision.

Transforming GameObjects into Utility Agents

To transform a Game Object into a Utility Agent, you need to attach these two components to it:

1. Utility Agent Facade

It is similar to Utility Entity Facade but instead of interact with the GameObject of the Utility Entity, it is

used to interact with the Game Object of the Utility Agent.

To create your own Utility Agent Facade, you need to create a class inherited from UtilityAgentFacade . For

example:

2. Utility Agent Controller

It is similar to Utility Entity Controller, but instead of create and manage the lifecycle of the Utility

Entity, it creates and manage the lifecycle of the Utility Agent.

It injects Utility Intelligence Data from the Utility Intelligence Asset into Utility Agent, giving the agent

intelligence.

public class Character : UtilityAgentFacade

{

 [SerializeField]

 private Team team;

 private CharacterEnergy energy;

 private CharacterHealth health;

 private NavMeshAgent navMeshAgent;

 private Rigidbody rigidBody;

 public Team Team => team;

 public NavMeshAgent NavMeshAgent => navMeshAgent;

 public Rigidbody RigidBody => rigidBody;

 public CharacterHealth Health => health;

 public CharacterEnergy Energy => energy;

 private void Awake()

 {

 navMeshAgent = GetComponent<NavMeshAgent>();

 rigidBody = GetComponent<Rigidbody>();

 health = GetComponent<CharacterHealth>();

 energy = GetComponent<CharacterEnergy>();

 }

}

Utility Intelligence - Documentation 28 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 29

Utility Intelligence - Documentation 29 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-agent.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityWorld/utility-agent.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 30

Utility Intelligence

Utility Intelligence - Documentation 30 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 31

Utility Intelligence

Utility Intelligence is an object that uses Utility Intelligence Data to help Utility Agents make and execute

decisions. It grants intelligence to Utility Agents.

Utility Intelligence Asset

Utility Intelligence Asset is a data container used to store Utility Intelligence Data. It can be created by right-

clicking in the Project Window and select Create/CarlosLab/Utility Intelligence Asset.

Utility Intelligence Data

Utility Intelligence Data is stored in JSON format. It includes information about:

Decision Makers

Decisions

Target Filters

Considerations

There are two ways to edit Utility Intelligence Data:

1. Manually Editing: Use a text editor to edit the data, and then import it into Utility Intelligence Asset using

File Toolbar Menu.

2. Utility Intelligence Editor: Use the Utility Intelligence Editor to edit the data. This is the recommended way.

Utility Intelligence - Documentation 31 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 32

Intelligence Editor

Editor Mode

There are three ways to open the Utility Intelligence Editor for a Utility Intelligence Asset at editor time (Editor

Mode):

1. Double-click the Utility Intelligence Asset in the Project Window.

2. Select the Utility Agent with the assigned Utility Intelligence Asset in the Hierarchy Window, and then click

the Open Editor button in the Inspector Window.

3. Select Tools -> Carlos Lab -> Utility Intelligence -> Utility Intelligence Editor, and then select the Utility

Intelligence Asset in the Project Window.

Here’s how the Utility Intelligence Editor looks in Editor Mode:

Utility Intelligence - Documentation 32 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/open-editor-window-inspector.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/open-editor-window-inspector.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/open-editor-window-tools.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/open-editor-window-tools.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 33

Toolbar

Currently, Unity only supports toolbar in Editor Mode, so you won’t see it if you open it in Runtime Mode.

File Menu

Import Data : Import the Intelligence Data from a JSON file.

Export Data : Export the Intelligence Data to a JSON file.

Show Data : Show the Intelligence Data in JSON format.

Clear Data : Clear all the Intelligence Data.

With the File Menu Toolbar, you can edit the Intelligence Data directly in JSON format using your Text Editor,

then import it into the Intelligence Asset:

Utility Intelligence - Documentation 33 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-editor_editor-mode.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-editor_editor-mode.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 34

Features: JSON Editing (v2)Features: JSON Editing (v2)

Runtime Mode

One robust feature Utility Intelligence offers is that the Utility Intelligence Editor can function both during

editor time and at runtime in builds. This feature enables users to adjust variables in the Utility Intelligence

Editor to observe how they affect the agent’s decisions for testing purposes in builds.

To open the Utility Intelligence Editor for a Utility Agent at runtime in builds (Runtime Mode):

1. Create a Utility Intelligence Runtime Editor by right-clicking in the Hierarchy Window, then select

CarlosLab/Utility Intelligence Runtime Editor. Alternatively, you can create it manually by creating a new

Game Object and adding these components to it.

Utility Intelligence - Documentation 34 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=J2xQq7ekfT0
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 35

2. Add a Utility Intelligence Runtime Editor Presenter to the Utility Agent, assign the Utility Intelligence

Runtime Editor to the Editor field, and set the Show Key to show the editor when the key is pressed.

Here’s how the Utility Intelligence Editor looks in Runtime Mode:

Utility Intelligence - Documentation 35 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-runtime-editor.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-runtime-editor.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-runtime-editor-presenter.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-runtime-editor-presenter.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 36

Feature: Runtime Editor (v2)Feature: Runtime Editor (v2)

Lock the Editor

Utility Intelligence - Documentation 36 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-editor_runtime-mode.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-editor_runtime-mode.png
https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=C6oSn0DkdXg
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 37

We have received feedback that the ability to lock the Intelligence Editor is important for testing purposes. It

allows users to modify variables from other Game Objects through the Inspector Window and see how they

affect the decision scores in the Intelligence Editor. After considering, we decided to add this feature in v2.2.0.

We believe you will like this feature.

New Feature: Lock Button (v2.2.0) | Utility AI Framework for Unity GameObjecNew Feature: Lock Button (v2.2.0) | Utility AI Framework for Unity GameObjec……

Tabs

Intelligence Tab

In Intelligence Tab, you can create new decision makers and add Decisions created in Decision Tab to your

decision makers.

Utility Intelligence - Documentation 37 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=1K_44LZNuak
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 38

Status Preview

Besides that, you can preview the status of multiple components for any changes, such as inputs, and response

curves, right in the Editor without having to play your game. For example:

The score and status of each consideration, indicating which considerations are executed and discarded.

The score and status of each decision, indicating which decision is chosen based on the current inputs, input

normalizations, and response curves.

I believe this feature will save a lot of your time while designing AIs for your games.

Utility Intelligence - Documentation 38 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 39

Feature: Status Preview (v2)Feature: Status Preview (v2)

Runtime Status

Additionally, you can view the current status of multiple components during runtime. It is similar to Status

Preview but includes additional runtime information, such as the best target for each decision, and the current

status of considerations and action tasks.

Feature: Runtime Status (v2)Feature: Runtime Status (v2)

Utility Intelligence - Documentation 39 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=N2QVn5GaklA
https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=yzXQNdYbXCk
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 40

Runtime Editing

Furthermore, you can tweak your AI behaviors during runtime for testing purposes without having to replay

your game.

Feature: Runtime Editing (v2)Feature: Runtime Editing (v2)

Decision Tab

In Decision Tab, you can create new Decisions and add target filters, action tasks, Considerations to your

decisions.

Utility Intelligence - Documentation 40 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=awmbjOUqi-k
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 41

Target Filter Tab

In Target Filter Tab, you can create new target filters to filter targets for each decision:

Utility Intelligence - Documentation 41 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/decision-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/decision-tab.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 42

Consideration Tab

In Consideration Tab, you can create new considerations and select input normalizations and response curves for

your considerations. Besides that, you can adjust the input values and response curves to observe how they

affect the consideration scores:

Feature: Intuitive Consideration EditorFeature: Intuitive Consideration Editor

Utility Intelligence - Documentation 42 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/target-filter-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/target-filter-tab.png
https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=Krv0C2H9dcw
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 43

Input Normalization Tab

In Input Normalization Tab, you can create new input normalizations and select inputs for your input

normalizations.

Input Tab

In Input Tab, you can add new inputs to the intelligence assets.

Utility Intelligence - Documentation 43 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-normalization-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-normalization-tab.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 44

You can adjust the input values in the editor to observe how these changes affect the statuses of considerations and

decisions. For further details, read Status Preview

For example, if you set the input values in the intelligence asset: MeleeAttackWithoutForce (in our examples) as

follows:

Tip

Utility Intelligence - Documentation 44 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab_modify-inputs.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab_modify-inputs.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 45

Then you will notice that the decision: MoveToEnemy is selected in the Intelligence Tab. This means you can

determine which decision will be chosen based on the current input values without needing to play your game.

Therefore, you will have more time to design your AIs.

Blackboard Tab

In Blackboard Tab, you can add variables to share information between multiple components within the agent,

such as inputs, input normalizations target filters, and action tasks.

Utility Intelligence - Documentation 45 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab_modify-inputs.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab_modify-inputs.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 46

Feature: Blackboard Variables (v2)Feature: Blackboard Variables (v2)

If some of your blackboard variables are used by one of the inputs or input normalizations, then changing the values

of those variables will also affect the statuses of considerations and decisions, just like input values.

Continuing with the example from Input Tab, if you change the sight radius to 15 (the original value is 40):

Tip

Utility Intelligence - Documentation 46 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.youtube.com/watch?list=PLcgg74B3-wb8-XmUYViDH6ycyNIUR8SiI&v=QNKIatsxPQQ
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 47

Then in the Intelligence Tab, the selected decision will change from MoveToEnemy to Idle because the enemy is

out of the agent’s sight:

Utility Intelligence - Documentation 47 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/blackboard-tab_sight-radius.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/blackboard-tab_sight-radius.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab_sight-radius.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/intelligence-tab_sight-radius.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 48

Decision Makers

In Utility Intelligence, a decision maker contains a list of decisions, and the responsibility of each decision maker

is to select the best decision from them based on the current situation. Additionally, each utility agent can contain

multiple decision makers.

Understanding how the decision-making process works

Here’s how the decision-making process of a utility agent works:

1. For each decision maker, the utility agent calculates the scores of all attached decisions and selects the best

decision.

2. Afterwards, the utiltiy agent compares the scores of the best decisions from each decision maker with each

other, and the winner is the decision with the highest score.

Creating Decision Makers

Utility Intelligence - Documentation 48 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/DecisionMakers/decision-maker.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/DecisionMakers/decision-maker.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 49

To create a decision maker, you need to go to the Intelligence Tab, fill in the Name Field, and then click the Create

button:

After creating a decision maker, you can add Decisions to it and monitor which decision will be chosen as the best

one based on the current situation.

Decision Maker Statuses

At runtime, decision makers have 4 statuses:

 : Running

 : Success

 : Failed

 : Inactive

At editor time, decision makers have 2 statuses:

Utility Intelligence - Documentation 49 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/DecisionMakers/create-decision-maker.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/DecisionMakers/create-decision-maker.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 50

 : Selected

 : Unselected

Utility Intelligence - Documentation 50 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 51

Decisions

In Utility Intelligence, each decision has:

A list of Target Filters: They are used to filter targets for the decision.

A list of Considerations: They are used to calculate the score of the decision.

A list of Action Tasks: They will be executed by the egent if the decision is chosen.

Understanding how decisions work

Since a decision is scored per target, and any Utility Entity (all GameObjects with UtilityEntityController or

UtilityAgentController attached) in the Utility World could be a target of the decision, we need a way to filter

targets to ensure that only appropriate targets are considered. This is the job of Target Filters.

After finding appropriate targets, all Considerations of the decision will be evaluated for each target to calculate

the score of each decision-target pair. Then the score of each pair is multiplied with the Decision weight to get the

final score.

Finally, the best decision-target pair with the highest score will be chosen and the agent will execute all Action

Tasks attached to the decision, either in Sequence or in Parallel.

Decisions are scored per target

A decision may or may not have targets. However:

1. If it has targets, it will be scored per target. Afterward, Utility Intelligence will compare the scores of all the

decision-target pairs with each other and select the pair with the highest score.

2. If it does not have targets, it will be scored only once, and that score is the final score of the decision.

Utility Intelligence - Documentation 51 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 52

Oscillation between decision-target pairs

When using Utility AI, there may be a scenario where decision-target pairs with similar scores oscillate back and

forth as their scores rise and fall. This leads to the agent constantly changing its decision and target. Currently,

there are four ways to address this issue:

1. Enable the Momentum Bonus option to add a bonus to the last chosen decision-target pair in the next

decision-making round.

This will prioritize the last decision-target pair over the others, thereby eliminating the oscillation.

2. Increase the weight of the decision that you want to prioritize. For example, let’s say 2 or 3 instead of just 1.

This will prioritize one decision over the others, reducing the oscillation.

3. Enable Keep Running Until Finished option to prevent the agent from making a new decision while an

important task is running.

When the agent is performing an important task, such as AttackPlayer, ChargeHealth,

ReloadAmmunition, and you don’t want it to be interrupted, you can enable this option to prevent the

Utility Intelligence - Documentation 52 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/decisions-per-target.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/decisions-per-target.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 53

agent from switching to another decision while that task is running.

4. Add more considerations to each decision.

This will introduce more variation to the score-calculation process, increasing the chances that the

competing decision will consistently win (or lose) and thereby reducing the oscillation.

Has No Target

A decision may or may not have targets. You can specify whether it has targets or not by checking/unchecking the

HasNoTarget toggle in the Decision Tab:

If the HasNoTarget toggle is checked:

The target filter list will be hidden because it is no longer necessary.

The decision will be considered as having no target, and will be scored only once without targets.

If the HasNoTarget toggle is unchecked:

If the target filter list is empty:

All utility entities in the same utility world will be considered as targets for the decision, and the decision

will be scored per target.

If the target filter list is not empty:

If the filtered targets > 0, the decision will be scored per target.

If the filtered targets = 0, the decision score will be 0

Decision Weight

Utility Intelligence - Documentation 53 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/has-no-target.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/has-no-target.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 54

In Utility Intelligence, you can control the prioritization of each decision by adjusting its Decision Weight.

For example, you can organize your decisions into multiple layers like the following:

Normal Layer’s Weight: 1.0

Combat Layer’s Weight: 2.0

Urgent Layer’s Weight: 3.0

The decision weight will then be multiplied by the decision score to get the final decision score:

You can change the weight of a decision in the Decision Tab:

Utility Intelligence - Documentation 54 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/decision-weight.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/decision-weight.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/adjust-decision-weight.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/adjust-decision-weight.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 55

The default value of Decision Weight is 1.0.

You can adjust the weight of a decision to a value lower than 1.0 to decrease the priority of that decision.

You can adjust the weight of decisions to reduce oscillation between nearly equal decision-target pairs.

Momentum Bonus

In Utility Intelligence, you can prioritize the last chosen decision-target pair in the next decision-making round

by increasing the Momentum Bonus:

In the next decision-making round, the last chosen decision-target pair will be prioritized by multiplying its score

by the Momentum Bonus, increasing its chances of winning and thereby reducing oscillation between nearly

equal decision-target pairs.

Info

Tip

Utility Intelligence - Documentation 55 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/momentum-bonus.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/momentum-bonus.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 56

The default value of Momentum Bonus is 1.1.

You can adjust the Momentum Bonus to a value lower than 1.0 to decrease the priority of the last chosen

decision-target pair.

Creating Decisions

To create a new decision, you need to go to the Intelligence Tab, fill in the Name field, and then click the Create

button:

After creating a decision, you can add Considerations to the decision and observe how they affect the decision

score. Additionally, you can add target filters and action tasks to the decision to determine which actions will be

executed with its targets if the decision is selected at runtime.

Info

Utility Intelligence - Documentation 56 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/create-decision.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/create-decision.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 57

Decision Statuses

At runtime, decisions have 4 statuses:

 : Running

 : Success

 : Failed

 : Inactive

At editor time, decision only have 2 statuses:

 : Selected

 : Unselected

Utility Intelligence - Documentation 57 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 58

Target Filters

Target Filters are used to filter targets for the current decision.

A decision may or may not have targets, so target filters are optional.

You can enable/disable target filters of a decision by checking/unchecking the HasNoTarget toggle in the

Decision Tab.

Creating Target Filters

1. To create a new target filter, define a new class that inherits from TargetFilter and override the

OnFilterTarget method:

Note

public class ChargeStationFilter : TargetFilter

{

 public ChargeStationType Type;

 protected override bool OnFilterTarget(UtilityEntity target)

 {

 return target.EntityFacade is ChargeStation station && station.Type == Type;

 }

}

Utility Intelligence - Documentation 58 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 59

2. To add the the target filter to the intelligence asset, go to the Target Filter Tab, select the target filter type,

give it a name, and then click the Create button:

3. To attach the target filter to a decision, select the decision in the Decision Tab, choose the target filter’s

name, and then click the Add button:

Adding Parameter Fields

Utility Intelligence - Documentation 59 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/target-filter-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/target-filter-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/TargetFilters/attach-target-filter.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/TargetFilters/attach-target-filter.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 60

There are many cases when you need to add parameters to an target filer to customize how it filter targets. To

achieve this, you need to declare these parameters as public fields in your target filters. Here an example of how

to do this:

Supported Field Types

Currently, only the supported field types can be serialized to JSON and adjusted using the Utility Intelligence

Editor. Therefore, you should use these types when declaring parameter fields for your target filters.

Built-in Target Filters

Currently, we provides these built-in target filters:

OtherFilter: Filters out the current agent, leaving other entities as targets.

AgentFilter: Filters out entities that are not utility agents, leaving only utility agents as targets.

public class TeamFilter : TargetFilter

{

 public Team Team;

 protected override bool OnFilterTarget(UtilityEntity target)

 {

 if (target.EntityFacade is Character targetCharacter)

 {

 return targetCharacter.Team == this.Team;

 }

 return false;

 }

}

Utility Intelligence - Documentation 60 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 61

Action Tasks

Action Tasks are tasks that the agent has to execute if the attached decision has been selected. They are executed

either in sequence or in parallel, depending on the execution mode of the action list.

Utility Intelligence uses Behavior Trees to create and execute action tasks. Basically, the action task system is a

simplified Behavior Tree. It includes some popular nodes such as Repeater, Sequencer, and Parallel.

Execution Modes

After the agent finds out the best decision, it will execute the action list either in sequence or in parallel,

depending on your choice. Currently, there are two execution modes for the action list:

Sequence

The actions will be run sequentially.

If an action finishes in success, the agent will run the next action, and the action list will finish in success if

the last action finishes in success.

If an action finishes in failure, the action list will finish in failure.

Parallel

The actions will be run simultaneously.

The action list will finish in success if all actions are finished in success.

If any action finishes in failure, other actions will be aborted and the action list will finish in failure.

ParallelComplete

The actions will be run simultaneously.

If any action finishes in success or failure, other actions will be aborted and the action list will return the

child status immediately.

You can choose the execution mode you want by selecting it from the action execution dropdown menu in the

Decision Tab.

What is the action task system based on?

Utility Intelligence - Documentation 61 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 62

Max Repeat Count

It is the number of times to repeat the action list.

The action list will only repeat if it is finished in success.

If MaxRepeatCount <= 0 it will repeat forever until it returns failure.

You can change MaxRepeatCount of the action list here:

Note

Utility Intelligence - Documentation 62 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/actions-execution-mode.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/actions-execution-mode.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 63

Keep Running Until Finished

In case you want to prevent the current agent from making a new decision while the action list is running, you can

check the option: Keep Running Until Finished in the Action List Editor.

By enabling this option for important decisions, such as AttackEnemy, ChargeHealth, and ReloadAmmunition, it

stops the agent from getting distracted by other non-important decisions. This helps reduce the oscillation

between these important decisions and other non-important ones.

For example, with AttackEnemy decision, you should enable this option because the agent needs to finish the

attack before switching to another decision, such as RunAwayFromEnemy.

Tip

Utility Intelligence - Documentation 63 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/max-repeat-count.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/max-repeat-count.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 64

If you enable this option, the agent can only change its decision after the action list is finished, regardless of

whether the scores of other decisions are higher than the current one.

For example, with AttackEnemy decision, the agent can only switch to another decision after each attack is

finished, even if the scores of other decisions such as RunAwayFromEnemy or ReloadAmmunition are higher

than AttackEnemy.

Additionally, if the score of the AttackEnemy decision remains the highest after each attack, the agent will keep

running this decision.

To enable/disable Keep Running Until Finished option, you need to check/uncheck it in the  Action List Editor:

Note

Utility Intelligence - Documentation 64 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/keep-running-until-finished.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/keep-running-until-finished.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 65

Creating Action Tasks

1. To create a new action task, define a new class that inherits from ActionTask :

2. To assign the action task to a decision, select the decision in the Decision Tab, choose the action type, and

then click the Create button:

Adding Parameter Fields

public class Wait : ActionTask

{

 private float elapsedTime;

 public VariableReference<float> WaitTime = 1.0f;

 protected override void OnStart()

 {

 elapsedTime = 0;

 }

 protected override UpdateStatus OnUpdate(float deltaTime)

 {

 elapsedTime += deltaTime;

 if (elapsedTime > WaitTime) return UpdateStatus.Success;

 return UpdateStatus.Running;

 }

}

Utility Intelligence - Documentation 65 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/assign-action-task.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/ActionTasks/assign-action-task.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 66

There are many cases when you need to add parameters to an action task to customize how it works. To achieve

this, you need to declare these parameters as public fields in your action tasks. Here are some examples of how to

do this:

Supported Field Types

Currently, only the supported field types can be serialized to JSON and adjusted using the Utility Intelligence

Editor. Therefore, you should use these types when declaring parameter fields for your action tasks.

Action Task Statuses

At runtime, action tasks have 4 statuses:

 : Running

 : Success

 : Failed

 : Aborted

Built-in Action Tasks

[Category("Examples")]

public class StartMeleeAttack : ActionTask

{

 public MeleeAttackType AttackType;

 public int AttackDamage;

 public int AttackForce;

 public int ConsumeEnergy;

 public VariableReference<float> AttackRange;

 public VariableReference<int> AttackNumber;

 public VariableReference<string> AttackAnimationName;

}

[Category("Examples")]

public class StartRangedAttack : ActionTask

{

 public RangedAttackType AttackType;

 public int ConsumeEnergy;

 public int AttackDamage;

 public int ProjectileSpeed;

 public float MaxCurvedHeight;

}

Utility Intelligence - Documentation 66 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 67

Currently, Utility Intelligence provides these built-in action tasks:

Idle: Does nothing.

Always returns UpdateStatus.Running .

Log: Logs a message to the console.

Wait: Waits until a wait time has passed.

The wait time is specified in the WaitTime variable.

Returns UpdateStatus.Success when the wait time has passed, otherwise, returns UpdateStatus.Running .

RandomWait: Waits until a wait time has passed.

The wait time is chosen randomly between the WaitTimeMin and WaitTimeMax variables.

Returns UpdateStatus.Success when the wait time has passed, otherwise, returns UpdateStatus.Running .

DestroySelf: Safely destroys the current agent.

MoveTowardsTarget: Moves to wards the target.

Uses Vector3.MoveTowards to move the agent towards the target.

Returns UpdateStatus.Success when the agent has reached the target, otherwise, returns UpdateStatus.Running .

StartCooldown: Starts a cooldown.

The start time of the cooldown is stored in the CooldownStartTime variable, which is used by

CooldownElapsedTimeInput and IsInCooldownNormalization to determine if the agent is within the cooldown

duration.

Animator

SetBool: Set the value of the boolean parameter specified by ParamName .

SetFloat: Set the value of the float parameter specified by ParamName .

SetInteger: Set the value of the integer parameter specified by ParamName .

SetTrigger: Set the value of the trigger parameter specified by ParamName .

WaitUntilAnimationFinished: Waits until the specified animation is finished.

Returns UpdateStatus.Success if the animation specified by AnimationName has the normalized time greater

than FinishedNormalizedTime , otherwise, returns UpdateStatus.Running .

NavMeshAgent

ChaseTarget: Chases the target.

The target position is updated every frame.

Returns UpdateStatus.Success when the agent has reached the target, otherwise, returns

UpdateStatus.Running .

MoveToTarget: Moves to the target.

The target position is updated only once at the start.

Utility Intelligence - Documentation 67 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 68

Returns UpdateStatus.Success when the agent has reached the target, otherwise, returns

UpdateStatus.Running .

MoveAwayFromTarget: Moves away from the target.

It will choose a destination at a distance specified in the DistanceToNextPoint variable from the current

agent with the direction based on an enum called DirectionPriority .

Returns UpdateStatus.Success when the agent has reached the destination, otherwise, returns

UpdateStatus.Running .

Patrol: Patrols around the waypoints.

It will move to the next way point in the Waypoints variable if it has reached the current one.

Always returns UpdateStatus.Running .

FaceTarget: Faces the target.

Returns UpdateStatus.Success right after the first update.

FaceTargetForever. Faces the target forever.

Always returns UpdateStatus.Running .

Properties and Functions

Properties

Here are some useful properties that you can use in your custom tasks:

Functions

GetComponent Functions

You can get any component attached to the GameObject by calling these functions:

Coroutine functions

We provides these functions to help you start/stop coroutines from action tasks:

Transform Transform { get; private set; }

GameObject GameObject { get; private set; }

UtilityAgentController AgentController { get; private set; }

T GetComponent<T>()

T GetComponentInChildren<T>()

Utility Intelligence - Documentation 68 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 69

Overridable Functions

Here is the list of functions you could override to make your actions works as you want:

Lifecycle Functions:

Collision/Trigger 3D:

Collision/Trigger 2D:

void StartCoroutine(string methodName);

Coroutine StartCoroutine(IEnumerator routine);

Coroutine StartCoroutine(string methodName, object value);

void StopCoroutine(string methodName);

void StopCoroutine(IEnumerator routine);

void StopAllCoroutines();

void OnAwake();

void OnStart();

Status OnUpdate();

void OnLateUpdate();

void OnFixedUpdate();

//OnAbort is called when the action's target changes or when the agent makes a new decision

void OnAbort();

//OnEnd is called after the action returns a success or failure

void OnEnd();

void OnCollisionEnter(Collision collision);

void OnCollisionStay(Collision collision);

void OnCollisionExit(Collision collision);

void OnTriggerEnter(Collider other);

void OnTriggerStay(Collider other);

void OnTriggerExit(Collider other);

void OnControllerColliderHit(ControllerColliderHit hit);

Utility Intelligence - Documentation 69 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 70

Animation:

void OnCollisionEnter2D(Collision2D collision);

void OnCollisionStay2D(Collision2D collision);

void OnCollisionExit2D(Collision2D collision);

void OnTriggerEnter2D(Collider2D other);

void OnTriggerStay2D(Collider2D other);

void OnTriggerExit2D(Collider2D other);

void OnAnimatorMove();

void OnAnimatorIK(int layerIndex);

Utility Intelligence - Documentation 70 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 71

Considerations

In Utility Intelligence, a consideration (also called axis) represents an aspect of the game world that influences

the utility of a decision. And its score indicates how appealing the decision is based on that aspect.

For instance, imagine our agent has a decision called AttackEnemy , which includes a consideration caled

EnemyHealthIsLow. Suppose the enemy’s health is 20 , then the utility score of this consideration would be 0.8 ,

indicating high appeal to the agent. However if the agent’s health rises to 60 , then the utility score decreases to

0.4 , making the decision less appealing to the agent.

You can add an infinite number of considerations (axes) to a decision. That’s why Dave Mark called it: Infinite

Axis Utility System.

For more information about Infinite Axis Utility System, you can watch his presentations here.

However, the more considerations you add, the closer decision score approaches 0. To address this, we introduced

Compensation Factor.

Understanding how considerations work

A consideration is made up of three components:

An Inputs

An Input Normalizations

A Response Curve

These represent three phases to calculate the score of a consideration. In the previous example, the

EnemyHealthIsLow consideration has the following components:

An Inputs that returns the enemy’s health.

An Input Normalizations that normalizes the enemy’s health into [0,1]

A Response Curve that linearly inverts the normalized enemy’s health. It returns the consideration score that

indicates how appealing the decision is based on the enemy’s health aspect.

Then these consideration scores will be multiplied together to get the final score of the decision. Therefore, if the

score of any consideration is 0 , then the score of the decision will also be 0 .

Infinite Number of Considerations (Axes)

Utility Intelligence - Documentation 71 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 72

Compensation Factor

The more considerations a decision has, the lower the score it will be due to the multiplication. For example, if a

decision has 9 considerations and the score of each consideration is 0.9 , then the final score of it will be 0.99 =

0.387.

Therefore, theoretically, if a decision has an infinite number of considerations, even if the consideration scores are

high, the final score of the decision will be close to 0 .

To address this issue, we added the Compensation Factor calculation, which takes into account the number of

considerations to balance it. This calculation originally presented in Building a Better Centaur: AI at Massive Scale

(9:10).

Here’s how the compensation factor calculation is implemented in code:

public static float CompensateScore(float considerationScore, float considerationCount)

{

 float modificationFactor = 1.0f - 1.0f / considerationCount;

 float makeUpValue = (1.0f - considerationScore) * modificationFactor;

 return considerationScore + makeUpValue * considerationScore;

}

Utility Intelligence - Documentation 72 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/infinite-axis.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/infinite-axis.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 73

To enable/disable Compensation Factor, you need to check/uncheck the Compensation Factor option in the

Intelligence Editor.

Creating Considerations

To create a new consideration, you need to go to the Consideration Tab, fill in the

Name field, and then click the Create button:

Utility Intelligence - Documentation 73 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/enable-compensation-factor.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/enable-compensation-factor.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 74

After creating a consideration, you can select an Input Normalizations for it, and adjust the Response Curve and

observe how these changes affect the consideration score.

Consideration Statuses

Considerations only have two statuses at both runtime and editor time:

 : Executed

 : Discarded

Utility Intelligence - Documentation 74 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/create-consideration.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/create-consideration.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 75

Response Curves

After an input is normalized into [0, 1] by an input normalization, we need a way to map the normalized input to

a consideration score that indicates how appealing the decision is based on the consideration aspect. This is the

role of response curves.

In the previous example, the consideraton EnemyHealthIsLow has a response curve that linearly inverts the

normalized enemy’s health. This curve returns the consideration score that indicates how appealing the decision

is based on the enemy’s health aspect. Therefore, the higher the enemy’s health, the lower the appeal of the

decision.

A response curve has 5 parameters:

Curve Type

Slope

Exponent

XShift

YShift

You can change these parameters to adjust the shape of the response curve based on your needs.

Utility Intelligence also provides a list of useful presets for response curves. If you want to use our presets, you

just need to select one and click the Apply button.

Utility Intelligence - Documentation 75 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 76

You can adjust the input values and response curves in the Consideration Tab to observe how they affect the

consideration scores.

Tip

Utility Intelligence - Documentation 76 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/response-curves.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/response-curves.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 77

Inputs

An input is some knowledge about the game world that is used to calculate the score of a consideration. For

example:

My health

Enemy’s health

Distance to the enemy

Creating Inputs

There are two ways to create a new input:

1. Define a new class that inherits from Input<TValue> and override the OnGetRawInput funnction. For example:

2. Define a new class that inherits from InputFromSource<TValue> and override the OnGetRawInput function.

public class DistanceToTargetInput : Input<float>

{

 protected override float OnGetRawInput(in InputContext context)

 {

 var currentPos = AgentFacade.Position;

 var targetPos = context.TargetFacade.Position;

 currentPos.Y = 0;

 targetPos.Y = 0;

 return Vector3.Distance(currentPos, targetPos);

 }

}

[Category("Examples")]

public class HealthInput : InputFromSource<int>

{

 protected override int OnGetRawInput(in InputContext context)

 {

 UtilityEntity inputSource = GetInputSource(in context);

 if (inputSource.EntityFacade is Character character)

 {

 return character.Health;

 }

 return 0;

 }

}

Utility Intelligence - Documentation 77 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 78

This method allows you to set the source of the input to Self or Target.

Note: Use this method only if the input exists in both Self and Target.

To add the input to the intelligence asset, go to the Input Tab, select the input type, give it a name, and then click

the Create button:

To attach an input to an input normalization, select the input normalization in the Input Normalization Tab, and

then choose the input’s name from the dropdown menu:

Utility Intelligence - Documentation 78 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/input-source.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/input-source.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-tab.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 79

Note: Only inputs with the same value type as the input normalization can be attached to it.

You can adjust the input values in the Intelligence Tab to observe how these changes affect the statuses of

considerations and decisions. For further details, check Status Preview.

Supported Value Types

Currently, only the supported value types can be adjusted using the Utility Intelligence Editor to preview which

decision is chosen with the Status Preview feature.

Therefore, you should use these types to enable the Status Preview feature. However, you can still use other

types if you don’t need this feature. For unsupported types, you can only modify the input values by overriding

OnGetRawInput() function.

Adding Parameter Fields

There are many cases when you need to add parameters to an input to customize its return value. To achieve this,

you need to declare these parameters as public fields in your inputs. Here are some examples of how to do this:

Note

Tip

Utility Intelligence - Documentation 79 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/select-input.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/select-input.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 80

Supported Field Types

Currently, only the supported field types can be serialized to JSON and adjusted using the Utility Intelligence

Editor. Therefore, you should use these types when declaring parameter fields for your inputs.

Built-in Inputs

Currently, Utility Intelligence provides these buit-in inputs:

BasicInputFloatInt

BasicInputBool

BasicInputFloat

BasicInputDouble

BasicInputLong

BasicInputVector2

BasicInputVector3

BasicInputVector2Int

BasicInputVector3Int

Returns the value from its InputValue field, which can reference a variable in the Blackboard.

DistanceToTargetInput: Returns the distance from the current agent to the target.

public abstract class InputFromSource<T> : Input<T>

{

 public InputSource InputSource;

 protected UtilityEntity GetInputSource(in InputContext context)

 {

 if (InputSource == InputSource.Self)

 return Agent;

 if (InputSource == InputSource.Target)

 return context.Target;

 return null;

 }

}

public abstract class BasicInput<T> : Input<T>

{

 public VariableReference<T> InputValue;

 protected override T OnGetRawInput(in InputContext context)

 {

 return InputValue.Value;

 }

}

Utility Intelligence - Documentation 80 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 81

CooldownElapsedTimeInput: Returns the elapsed time since the cooldown started.

RaycastToTargetInput: Returns true if the raycast hits the target; otherwise, returns false.

Utility Intelligence - Documentation 81 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 82

Input Normalizations

Since an input can vary widely in value, so we need a tool to normalize it into a fixed range [0,1] . This is where

input normalizations come into play. This step is crucial because it ensures that decisions are scored on a

consistent scale, allowing us to compare their scores and select the highest-scoring decision.

Creating Input Normalizations

To create a new input normalization, define a new class that inherits from InputNormalization<TValue> and override

the OnCalculateNormalizedInput method. For example:

[Category("Range")]

public class IsInRangeNormalizationFloat : InRangeNormalization<float>

{

 protected override float OnCalculateNormalizedInput(float rawInput, in InputNormalizationContext context)

 {

 float normalizedInput = rawInput >= MinValue && rawInput <= MaxValue ? 1.0f : 0.0f;

 return normalizedInput;

 }

}

Utility Intelligence - Documentation 82 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 83

To add the input normalization to the intelligence asset, go to the Input Normalization Tab, select the input

normalization type, give it a name, and then click the Create button:

To attach an input normalization to a consideration, select the consideration in the Consideration Tab, and then

choose the input normalization’s name from the dropdown menu:

Utility Intelligence - Documentation 83 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-normalization-tab.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/EditorWindow/input-normalization-tab.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 84

Note: Input normalizations can only accept inputs with the same value type.

Supported Value Types

Currently, only the supported value types can be adjusted using the Utility Intelligence Editor. Additionally, inputs

can only be attached to input normalizations if they share the same value type. Therefore, you should use these

types to enable the Status Preview feature to preview which decision is chosen by modifying the input values in

the Intelligence Editor. However, you can still use other types if you don’t need this feature.

Adding Parameter Fields

There are many cases when you need to add parameters to an input normalization to customize how it normalizes

its input value. To achieve this, you need to declare these parameters as public fields in your input normalizations.

Here are some examples of how to do this:

Note

public class IsInCooldownNormalization : InputNormalization<float>

{

 public VariableReference<float> CooldownDuration;

 protected override float OnCalculateNormalizedInput(float rawInput, in InputNormalizationContext context)

 {

 if (rawInput <= CooldownDuration)

 return 1.0f;

 else

 return 0.0f;

 }

}

Utility Intelligence - Documentation 84 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/select-input-normalization.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/Inputs/select-input-normalization.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 85

Supported Parameter Types

Currently, only the supported field types can be serialized to JSON and adjusted using the Utility Intelligence

Editor. Therefore, you should use these types when declaring parameter fields for your input normalizations.

Built-in Input Normalizations

We provides a lot of built-in input normalizations to help you normalize your inputs without having to write a

single line of code:

Float

BasicNormalizationFloat: Clamps the input value into [0, 1]

DivideByMaxValueFloat: Divides the input by MaxValue .

GreaterThanOrEqualToValueFloat: Returns 1 if the input value is greater than Value ; otherwise, returns 0

.

LessThanOrEqualToValueFloat: Returns 1 if the input value is less than the Value ; otherwise, returns 0 .

public abstract class InRangeNormalization<TValue> : InputNormalization<TValue>

{

 public VariableReference<TValue> MinValue;

 public VariableReference<TValue> MaxValue;

}

[Category("Range")]

public class InRangeNormalizationFloat : InRangeNormalization<float>

{

 protected override float OnCalculateNormalizedInput(float rawInput, in InputNormalizationContext context)

 {

 var diff = MaxValue - MinValue;

 if (diff <= 0.0f) return 0.0f;

 float normalizedInput = (rawInput - MinValue) / (diff);

 return normalizedInput;

 }

}

[Category("Range")]

public class InRangeNormalizationInt : InRangeNormalization<int>

{

 protected override float OnCalculateNormalizedInput(int rawInput, in InputNormalizationContext context)

 {

 var diff = MaxValue - MinValue;

 if (diff <= 0) return 0.0f;

 float normalizedInput = (float)(rawInput - MinValue) / (diff);

 return normalizedInput;

 }

}

Utility Intelligence - Documentation 85 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 86

InRangeFloat: Maps the input value from [MinValue, MaxValue] to [0, 1] . Note that if the input value is

above MaxValue , then the normalized value is 1 , and if the input value is below MaxValue , then the normalized

value is 0 .

IsInRangeFloat: Returns 1 if the input value is in the range [MinValue, MaValue] ; otherwise, returns 0 .

IsInCooldownNormalization: Returns 1 if the input (CooldownElapsedTimeInput) is within the cooldown

duration; otherwise, returns 0 .

Int

Similar to the floats

Bool

BasicNormalizationBool: Returns 1 if the input value is true ; otherwise, returns 0 .

Utility Intelligence - Documentation 86 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 87

Blackboard

Blackboard is used to share information between multiple components in an Agent.

It can be access from many places, such as Inputs, Input Normalizations, Target Filters, Actions.

It contains a list of variables and you can Read/Write to these variables for any purpose.

Creating Variables

To create a new variable, define a new class that inherits from Variable<TValue> . For example:

To add the variable to the intelligence asset, go to the Blackboard Tab, select the variable type, give it a name,

and then click the Create button:

public class FloatVariable : Variable<float>

{

 public static implicit operator FloatVariable(float value)

 {

 return new FloatVariable { Value = value };

 }

}

Utility Intelligence - Documentation 87 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 88

Supported Value Types

Currently, only the supported value types can be serialized to JSON and adjusted using the Intelligence Editor.

Therefore, you should use these types for your Blackboard Variables. However, you can still use other types if you

don’t need to serialize them to JSON. For unsupported types, you need to add them to the Blackboard at runtime

like this:

Referencing Variables

public class PatrolWaypoints : MonoBehaviour

{

 public List<Transform> Waypoints;

 private void Start()

 { Character character = GetComponent<Character>();

 var blackboard = character.Entity.Intelligence.Blackboard;

 var waypointsVariable = blackboard.GetVariable<TransformListVariable>(BlackboardVariableNames.Waypoints);

 waypointsVariable.Value = Waypoints;

 }}

Utility Intelligence - Documentation 88 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Blackboard/add-variable.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Blackboard/add-variable.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 89

To reference the variable from an action task, declare a public field of type VariableReference<TValue> in the action

task’s class. For example:

Then select the action task in the Decision Tab and choose the variable’s name from this dropdown menu:

[Category("NavMeshAgent")]

public class MoveToTarget : NavMeshActionTask

{

 public VariableReference<float> Speed = 5;

 protected override void OnStart()

 {

 navMeshAgent.speed = Speed;

 MoveToTarget();

 }

 protected override UpdateStatus OnUpdate(float deltaTime)

 {

 if (HasArrived())

 return UpdateStatus.Success;

 return UpdateStatus.Running;

 }

 protected override void OnEnd()

 {

 StopMove();

 }

}

Utility Intelligence - Documentation 89 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Blackboard/reference-variable.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Blackboard/reference-variable.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 90

Built-in Variables

Currently, we provides these built-in variables:

Float

Double

Int

Long

Bool

String

Vector2

Vector2Int

Vector3

Vector3Int

Color

GameObject

GameObjectList

Transform

TransformList

Animator

NavMeshAgent

ScriptableObject

ScriptableObjectList

Utility Intelligence - Documentation 90 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 91

Tips & Tricks

Utility Intelligence - Documentation 91 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 92

Tips & Tricks

General Tips & Tricks

Ask AI ChatBots

We provided detailed documentation in PDF format. So, if you need instant answers to your questions, upload our

documentation to the AI ChatBots, such as ChatGPT, Claude, or Perplexity, and then you can ask about anything

you don’t understand regarding Utility Intelligence. It’s much easier for beginners to learn Utility Intelligence

this way.

Use GitHub Copilot

GitHub Copilot recently released a free plan. So, if you are having trouble getting started because you don’t

understand our code in the examples, you can ask GitHub Copilot to explain it to you for free.

Other Tips & Tricks

1. Intelligence Editor

2. Considerations

3. Decisions

4. Decision Makers

5. Utility Worlds

Utility Intelligence - Documentation 92 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 93

Intelligence Editor

Use Status Preview

After making changes to considerations or decisions, you can use our Status Preview feature to check whether

the results are as you expected.

For better results, if your inputs have targets, you should create a separate input for each kind of target so that

you can change the input value for each target type to see how it affects the decision scores. For example, you

can create DistanceToEnemyA , DistanceToEnemyB , DistanceToHealthStation , DistanceToEnergyStation , etc., adjust their

values, and then check the result in the Intelligence Editor.

Lock the Intelligence Editor

If you want to modify variables from other GameObjects and see how they affect the decision scores, you can

lock the Intelligence Editor, select other GameObjects, change those variables in the Inspector Window, and

see the results in the Intelligence Editor.

For example, suppose you have an input called DistanceToTarget, and you want to see how it affects the

decision scores at runtime. You can lock the Intelligence Editor, drag the target around the current scene, and

then check the result in the Intelligence Editor.

For more information, please read: Lock the Editor

Group your components into categories

As your AI system becomes more complex, you will have many inputs, input normalizations, considerations, and

decisions, making it challenging to manage. You should group them into categories for easier management by

using CategoryAttribute and CategoryField.

For more information, please check: Categories

Organize Fields in the IntelligenceEditor

After your classes become more complex and have a lot of fields, you can organize your fields in the Intelligence

Editor by using the Field Attributes

Change class names and field names in JSON

When you change the class names or field names of a serializable component (Input, InputNormalization,

TargetFilter, or ActionTask), you can use the JSON Attributes to change those names in JSON.

Utility Intelligence - Documentation 93 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 94

Considerations

There are 3 kinds of considerations:

Boolean consideration: Returns a score of 0.0 or 1.0 .

Use this if you need to consider a Yes-No question. If the answer is yes , it returns 1.0 , and vice versa.

For example:

IsTargetInAttackRange

IsTargetInDamageArea

IsInAttackCooldown

Variable consideration: Returns a score from 0.0 to 0.1 .

Use this if you need a consideration that returns a score that changes dynamically based on the current

input.

For example:

TargetInSightRadius

TargetInAttackRange

MyHealthIsLow

TargetHealthIsHigh

Constant consideration: Returns a constant score in [0.0, 1.0] . Use this when:

You need a consideration that always returns a constant score, e.g., 0.1 or 0.2 , etc.

You need a fallback decision that will be selected if the the agent doesn’t know which decision to choose in

the current situation.

For example:

Idle

Common Consideration Recipes

Distance

IsTarget(Not)InRange

Returns 1.0 if the target is within the specified range or 0.0 if it is outside the range.

Recipe

Input: DistanceToTargetInput

InputNormalization: IsInRangeNormalization

Utility Intelligence - Documentation 94 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 95

ResponseCurve: Basic Linear (Inverse Linear)

TargetInRange

Returns a score in [0.0, 1.0] . It maps the input value (DistanceToTargetInput) from [Start, End] to [0.0, 1.0] .

If the input value is less than Start, returns 0.0

If the input value is greater than End, returns 1.0

Recipe

Input: DistanceToTargetInput

InputNormalization: InRangeNormalization

ResponseCurve: Which ResponseCurve should you use?

Is(StateName)State

Returns 1.0 if input state is the specified state; otherwise returns 0.0 .

Recipe:

Input: User Custom Input (often an Enum)

Returns a state of the agent or the target.

InputNormalization: User Custom Input

Returns 1.0 if input state is the specified state.

Returns 1.0 if input state is not the specified state.

ResponseCurve: Basic Linear (Inverse Linear)

Is(Not)InCooldown

Returns 1.0 if the CooldownElapsedTimeInput is within the cooldown duration; otherwise returns 0.0

Recipe:

Input: CooldownElapsedTimeInput

InputNormalization: IsInCooldownNormalization

ResponseCurve: Basic Linear (Inverse Linear)

Random

Returns a random score in [0.0, 1.0]

Recipe:

Input: User Custom Input

Returns a random input value.

Utility Intelligence - Documentation 95 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 96

InputNormalization: BasicNormalization

ResponseCurve: Basic Linear

Health

The input value will be normalized by dividing by 100

If the input is less than 0.0 , returns 0.0

If the input is greater than 100 , returns 1.0

Recipe

Input: Health

InputNormalization: DivideByMaxValue

ResponseCurve: Which ResponseCurve should you use?

Idle

Returns a constant score (often 0.1)

Recipe:

Input: None

InputNormalization: None

ResponseCurve: Constant

Which ResponseCurve should you use?

Boolean considerations:

Basic Linear or Inverse Linear

Variable considerations:

Suppose the input gradually increases from 0.0 to 1.0 :

The score is proportional to the input and increases gradually.

Linear: Basic Linear

Slow at first, fast later: Basic Quadric Lower Right

Fast at first, slow later: Basic Quadric Upper Left

Slow at either end, fast in the middle: Basic Logistic

Fast at either end, slow in the middle: Basic Logit

The score is inversely proportional to the input and decreases gradually.

Linear: Inverse Linear

Slow at first, fast later: Basic Quadric Upper Right

Utility Intelligence - Documentation 96 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 97

Fast at first, slow later: Basic Quadric Lower Left

Slow at either end, fast in the middle: Inverse Logistic

Fast at either end, slow in the middle: Inverse Logit

The score fluctuates

Slow at either end, fast in the middle: Basic Bell Curve or Inverse Bell Curve

Fast at either end, slow in the middle: Basic Logit or Inverse Logit

More dynamic: Basic Sine or Inverse Sine

Constant considerations:

Constant

Utility Intelligence - Documentation 97 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 98

Decisions

Enable Compensation Factor

If your agents have decisions that contain a lot of considerations, you should enable Compensation Factor to

ensure the decision scores are not quite low.

For more information about Compensation Factor, see: Compensation Factor

Enable KeepRunningUntilFinished

If your agents have an important decision that you don’t want to interrupt while it is running, regardless of

whether there is another decision with a higher score, you can enable the KeepRunningUntilFinished option of

the decision to prevent the agents from making a new decision while it is running.

For more information about KeepRunningUntilFinished, see: KeepRunningUntilFinished

Use MomentumBonus

If you want to prioritize the last chosen decision-target pair in the next decision-making round, you can set the

Momentum Bonus to a value greater than 1.0 (usually between 1.1 -> 1.25). In the next decision-making round,

the last chosen decision-target pair will be prioritized by multiplying its score by the Momentum Bonus,

increasing its chances of winning and thereby reducing  oscillation between nearly equal decision-target pairs.

For more information about MomentumBonus, see: Momentum Bonus

Add Fallback Decision

You should add a fallback decision with a constant score so that your agents always have a decision to run.

For example, in our example scenes, we always add the Idle decision with a score of 0.1. Therefore, when our

agents find themselves in a situation where they don’t know which decision to choose, they will be idle.

Use Decision Weight

If you want to prioritize one decision over another, you can adjust its weight to be higher than the other.

For example:

Normal Layer’s Weight: 1.0

Combat Layer’s Weight: 2.0

Urgent Layer’s Weight: 3.0

Utility Intelligence - Documentation 98 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 99

For more information about Decision Weight, see: Decision Weight

Use empty TargetFilter list for Decisions that target all Entities

If the targets of your decision are all entities in the current utility world, you can leave the TargetFilter list of the

decision empty. For decisions that have targets and an empty TargetFilter list, the utility world will pass all its

entities to the decision.

How Tos

How to enable/disable a decision based on a condition?

Add a boolean consideration that returns 1.0 (true) or 0.0 (false) depending on the condition result.

How to enable/disable decisions based on states

Add a state consideration to each decision. Check the recipe for a state consideration here: Common

Consideration Recipes

How to add some randomness to a decision?

Add a random consideration to the decision. Check the recipe for a random consideration here: Common

Consideration Recipes

How to reduce the oscillation of scores between decision-target pairs

For more information about how to reduce the oscillation of scores between decision-target pairs, see:

Oscillation between decision-target pairs

Utility Intelligence - Documentation 99 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 100

Decision Makers

Character Transformation

In case you want to transform your character into another with a different set of behaviors, you can create a

separate Decision Maker for each kind of character. For example, if you want to transform a warrior into an

archer when he picks up a bow, you can create one Decision Maker for the warrior and another for the archer.

Note: you need to add a boolean consideration (HasABow) to all decisions in the Archer DM to enable/disable

the DM based on the condition of whether the archer has a bow.

Utility Intelligence - Documentation 100 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 101

Utility Worlds

Create separate worlds for different purposes

Utility Worlds can serve a variety of purposes within a game. For example, you can create one utility world for

handling character behaviors during combat (attacking, moving, fleeing, etc.), one utility world for managing

character behaviors in daily routines (eating, sleeping, drinking, resting, etc.), and another for controlling

character interactions in social scenarios. Each Utility World can focus on a specific aspect of the game, enabling

modular and maintainable AI systems.

The key benefit of using multiple worlds is to reduce the cost of decision-making. When your characters have

different sets of behaviors (Decision Makers), if you put all of them into one Intelligence Asset, the cost of

decision-making will be high because behaviors in one set may not be used in other sets (e.g. combat behaviors

not being used in daily routines).

Reduce the number of considerations, decisions, decision makers that need to be executed.

Reduce the number of targets that need to be filtered

Each decision has different types of targets, so it requires different types of target filters. If you include all

decisions in one Intelligence Asset, you will need to register all their targets with the utility world. This will

increase the cost of filtering targets for these decisions.

Benefits

Utility Intelligence - Documentation 101 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 102

Optimization Tricks

Optimizing the decision-making process

Adjust the decision-making interval

In Utility Intelligence, decision-making is separated from decision-execution, allowing you to run decision-making

at a different frequency than decision-execution by adjusting the Decision Making Interval in the Utility World

Controller:

The default decision-making interval is 0.1s. You can inrease it to 0.2s, 0.3s, or 0.5s depending on your game

needs. It will help reduce computational burden on the CPU.

Distribute the decision-making task across multiple frames

Utility Intelligence - Documentation 102 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#how-utility-ai-addresses-this_2
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/adjust-decision-making-interval.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/adjust-decision-making-interval.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 103

Starting from v2.1.0, we can distribute the decision-making task across multiple frames to balance the workload

by checking Enable Decision Making Batch Processing in the Utility World Controller.

After Enable Decision Making Batch Processing is checked, you can set the Decision Making Batch Size to limit

the number of agents that can make decisions per frame. The default batch size is 40.

For example, if you have 500 agents, and you set the Decision Making Batch Size to 20, it will take 25 frames to

complete the decision-making process.

This feature will help you handle significantly more agents than before. Previously, the decision-making for all

agents in a utility world was processed within a single frame, which could cause spikes in the profiler if you had a

high number of agents. Now you can limit the number of agents to 20 per frame, or even to 10 per frame. This will

greatly reduce the computational burden per frame on the CPU, and help avoid performance spikes.

Here’s my test with 300 agents: the decision-making process runs every 0.25s and processes 10 agents per frame.

Utility Intelligence - Documentation 103 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/decision-making-batch-processing.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/decision-making-batch-processing.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 104

New Feature: Decision Making Batch Processing (v2.1.0) | Utility AI FramewoNew Feature: Decision Making Batch Processing (v2.1.0) | Utility AI Framewo……

Create separate worlds for different purposes

If your agents have different sets of behaviors for different purposes, you should create a separate utility world

for each purpose to reduce the cost of decision-making.

For more information, please read: Why you should create separate worlds for different purposes.

Optimizing the score-calculation process

Understanding how the process works

Utility Intelligence - Documentation 104 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.youtube.com/watch?v=AiEFqbusw5w
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 105

Before starting optimization, you need to understand how the score-calculation process works first. In Utility

Intelligence, the score-calculation process is executed sequentially from top to bottom, and the lower ones are

discarded if they cannot possibly beat the higher one.

For example:

In this case, firstly, Decision 1 is scored, and its final score is 0.61 . This score will be passed into the score-

calculation process of Decision 2 as minToBeat .

When calculating the score of Decision 2, since its first consideration is scored as 0.54 and the decision weight is

1 , the maximum score of Decision 2 is 0.54 . Since it is lower than minToBeat , Decision 2 realizes that it cannot

beat Decision 1. Consequently, all lower considerations are discarded and the final score of Decision 2 is 0.00 .

For decision makers, they are similar to decisions, if the lower ones realize that they cannot possibly beat the

higher one, then they will be discarded, and their final score will be 0.00 .

How to optimize the process

Now that you understand how the score-calculation process works, and to optimize this process, follow these

guidelines:

Reordering decision makers, decisions, and considerations

Utility Intelligence - Documentation 105 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/ones-below-discarded.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/ones-below-discarded.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 106

Considerations

Put considerations that have a high probability of returning a low score at the top.

This ensures that lower considerations will be discarded because it’s very difficult for lower decisions to

beat the higher ones if their first consideration returns a low score.

A good question we should ask ourselves when doing this is: Does this consideration return a low score

most of the time? For example:

IsTargetInAttackRange (it usually returns 0.0 because most of the time the target is not in the attack

range).

Put considerations that are expensive at the bottom. For example:

Considerations using raycasts.

Decisions

Put decisions that have a high probability of returning a high score at the top.

This ensures that lower decisions will be discarded because it’s very difficult for them to beat the higher

ones with a high score.

A good question we should ask ourselves when doing this is: Does this decision return a high score most

of the time? For example:

FindPlayer (it usually returns high score because most of the monsters are constantly finding the

player).

Decisions with high weights.

Decision Makers

Similar to decisions.

To reorder decision makers, decisions, and considerations, you need to enable the Reorderable option in the

Editor. This option adds drag handles before every item, allowing you to change the order of each item by

dragging it.

Utility Intelligence - Documentation 106 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 107

Considerations that are green have been executed.

Considerations that are orange have been discarded.

For more information about the statuses of considerations, check Consideration Statuses

Note

Utility Intelligence - Documentation 107 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/reorderable.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/reorderable.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 108

Caching calculated results

Did you know that calculated results from inputs, input normalizations, considerations and decisions can be

cached and reused across parent components, thereby eliminating unnecessary recalculations.

Considerations

To enable caching the calculated score of a consideration:

Utility Intelligence - Documentation 108 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/considerations-statuses.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/OptimizationTricks/considerations-statuses.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 109

If the consideration has no target, check the HasNoTarget toggle:

If the consideration has targets, uncheck the HasNoTarget toggle and check the EnableCachePerTarget

toggle:

Utility Intelligence - Documentation 109 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/has-no-target.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/has-no-target.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 110

Utility Intelligence - Documentation 110 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/enable-cache-per-target.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Considerations/enable-cache-per-target.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 111

Enable Cache Per Target

Managing scores for individual targets incurs a cost. Therefore, caching is only effective if the cost of caching is

lower than the cost of recalculating the score.

You should enable caching per target only if the consideration contains heavy inputs, input normalizations and

is used by multiple decisions.

Has No Target

The consideration is treated as having no target. In this case, the consideration score is cached directly within

the consideration, eliminating the need to manage scores for individual targets. This results in a very low

caching cost.

You should enable this option for every consideration that does not access the decision’s target.

Inputs, Input Normalizations and Decisions

Similar to considerations.

Note

Utility Intelligence - Documentation 111 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 112

Supported Types

Supported Value Types

Currently, only the following value types are supported. You should use these types as value types for Inputs,

Input Normalizations, and Blackboard Variables:

enum

int

long

float

double

bool

string

Vector2

Vector2Int

Vector3

Vector3Int

Color

You can still use other types as value types for Inputs, Input Normalizations, and Blackboard Variables. However, they

will not be shown in the Intelligence Editor. Therefore, you will not be able to adjust their values through the

Intelligence Editor

Supported Field Types

Currently, only the following field types can be serialized to JSON and adjusted using the Utility Intelligence

Editor. You should use these types when declaring parameter fields for Inputs, Input Normalizations, Action Tasks,

and Target Filters.

enum

int

long

float

double

Note

Utility Intelligence - Documentation 112 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 113

bool

string

Vector2

Vector2Int

Vector3

Vector3Int

Color

LayerMask

VariableReference<TValue>

Utility Intelligence - Documentation 113 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 114

Attributes

JSON Attributes

Some users have provided feedback that renaming class names and field names is currently quite annoying

because it has to be done manually by editing the serialized JSON. So, in v2.2.0, we introduce these attributes to

make renaming class names and field names easier and faster.

You can use these attributes for input, input normalizations, action tasks and target filters.

ClassFormerlySerializedAs

To change a class name from CarlosLab.OldNamespace.OldActionTask to CarlosLab.NewNamespace.NewActionTask , you need

to pass the old class name and the old namespace to the constructor of ClassFormerlySerializedAs :

If the namespace remains unchanged, you only need to pass the old class name:

FieldFormerlySerializedAs

To change a field name from OldField to NewField , you need to pass the old field name to the constructor of

FieldFormerlySerializedAs :

Info

namespace CarlosLab.NewNamespace

{

 [ClassFormerlySerializedAs(oldClassName:"OldActionTask", oldNamespace:"CarlosLab.OldNamespace")]

 public class NewActionTask : ActionTask

 {

 }

}

namespace CarlosLab.Unchanged

{

 [ClassFormerlySerializedAs(oldClassName:"OldActionTask")]

 public class NewActionTask : ActionTask

 {

 }

}

public class NewActionTask : ActionTask

{

 [FieldFormerlySerializedAs("OldField")]

 public int NewField;

}

Utility Intelligence - Documentation 114 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 115

Field Attributes

We have received feedback that it’s currently hard to read our classes as they become more complex and have a

lot of fields. So, in v2.2.0, we added these attributes to help you organize your fields in the Intelligence Editor.

You can use these attributes in input, input normalizations, action tasks and target filters.

New Feature: Field Attributes (v2.2.0) | Utility AI Framework for Unity GameONew Feature: Field Attributes (v2.2.0) | Utility AI Framework for Unity GameO……

BoxGroup & FoldoutGroup

BoxGroup and FoldoutGroup attributes are used to group fields in the Intelligence Editor.

Info

Utility Intelligence - Documentation 115 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.youtube.com/watch?v=3akWNkNjT88
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 116

Here’s how it looks in the Intelligence Editor:

ShowIf & HideIf

ShowIf and HideIf attributes are used to show/hide fields in the Intelligence Editor. These attributes allow users

to display fields based on conditions. You can use them for basic types, such as bool , enum , string , float , and int .

Here are examples of how to use these attributes with bool type and enum type:

Bool

public class TestGroupTask : ActionTask

{

 [BoxGroup("Group1")]

 public string Field1;

 [BoxGroup("Group1")]

 public int Field2;

 [BoxGroup("Group1")]

 public float Field3;

 [FoldoutGroup("Group2")]

 public string Field4;

 [FoldoutGroup("Group2")]

 public int Field5;

 [FoldoutGroup("Group2")]

 public float Field6;

}

Utility Intelligence - Documentation 116 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/group-attributes.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/group-attributes.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 117

Here’s how it looks in the Intelligence Editor:

Enum

public class TestBoolTask : ActionTask

{

 public bool Toggle;

 [ShowIf("Toggle")]

 public int ShowIfToggleDefault;

 [ShowIf("Toggle", true)]

 public float ShowIfToggleTrue;

 [ShowIf("Toggle", false)]

 public int ShowIfToggleFalse;

 [HideIf("Toggle")]

 public float HideIfToggleDefault;

 [HideIf("Toggle", true)]

 public float HideIfToggleTrue;

 [HideIf("Toggle", false)]

 public int HideIfToggleFalse;

}

Utility Intelligence - Documentation 117 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-bool-true.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-bool-true.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-bool-false.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-bool-false.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 118

Here’s how it looks in the Intelligence Editor:

public enum TestEnum

{

 Type1,

 Type2,

 Type3,

}

public class TestEnumTask : ActionTask

{

 public TestEnum Type;

 [ShowIf("Type")]

 public bool ShowIfTypeDefault;

 [ShowIf("Type", TestEnum.Type1)]

 public bool ShowIfType1;

 [ShowIf("Type", TestEnum.Type2)]

 public float ShowIfType2;

 [ShowIf("Type", TestEnum.Type3)]

 public int ShowIfType3;

 [HideIf("Type")]

 public bool HideIfTypeDefault;

 [HideIf("Type", TestEnum.Type1)]

 public bool HideIfType1;

 [HideIf("Type", TestEnum.Type2)]

 public float HideIfType2;

 [HideIf("Type", TestEnum.Type3)]

 public int HideIfType3;

}

Utility Intelligence - Documentation 118 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 119

Category Attribute

Category attribute is used to group your classes into categories. You can check how to use it here: Category

Attribute.

Utility Intelligence - Documentation 119 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type1.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type1.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type2.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type2.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type3.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Attributes/showif-enum-type3.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 120

Categories

As your AI system becomes more complex, you will have a lot of inputs, input normaizations, considerations and

decisions, making it challenging to manage. That’s why we provide these tools to help you group them into

categories.

Category Attribute

You can use the Category Attribute to group your classes into categories.

The Category Attribute can be applied to input, input normalizations, action tasks, target filters and blackboard

variables.

Here’s an example of how to use it for inputs:

This allows you to group your inputs into categories in the Input Type dropdown menu within the Input Tab.

Info

[Category("Examples")]

public class HealthInput : InputFromSource<int>

{

}

Utility Intelligence - Documentation 120 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 121

Category Field

After they are created, you can use the Category Field to group them into categories.

The Category Field is added in inputs, input normalizations, considerations, decisions, target filters and blackboard

variables.

Here’s an example of how to use it for decisions:

Info

Utility Intelligence - Documentation 121 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-create-input.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-create-input.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 122

This allows you to group your decisions into categories in the Decision Name dropdown menu within the

Intelligence Tab.

Utility Intelligence - Documentation 122 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-decision.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-decision.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-create-decision.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/Categories/category-create-decision.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 123

Upgrade Guide

General Upgrade Guide

Since the folder structure of this plugin might change frequently, the best way to upgrade Utility Intelligence to

a newer version is to first delete your old asset folders and then re-import the new version:

1. Backup your project

2. Delete the following folders:

v1

Assets/CarlosLab/Common

Assets/CarlosLab/UtilityIntelligence

v2

Packages/com.carloslab.common

Packages/com.carloslab.utilityintelligence

3. Download the new version and then re-import the package.

However, if the changes are minor, such as upgrading from v2.0.1 to v2.0.2, you can re-import the new version

without having to delete the old asset folders.

Upgrading from v1 to v2

2.0.0 is a major release with a lot of changes. It includes some breaking changes that require manual updates

when upgrading from v1 to v2. Sorry for the inconvenience.

These changes may break your project, so please backup your project before upgrading.

Intelligence Asset

We’ve made some breaking changes to the data structure of Intelligence Assets and increased the data version

from v1 to v2. Therefore, you need to update your intelligence assets to data v2 so that this framework can

deserialize them.

1. Update the intelligence data.

Select File -> Show Data to show the intelligence data.

Change MyDistanceToTargetInput to DistanceToTargetInput .

Change NavMeshMoveTowards to MoveToTarget .

Caution

Utility Intelligence - Documentation 123 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 124

Remove all InputNormalizations from all Considerations.

Move Decisions from DecisionMakers to the outer scope.

Data Structure - v1

Data Structure - v2

Select File -> Import Data to import the new intelligence data to the asset.

2. Create new input normalizations in the Input Normalization Tab.

3. Select the appropriate input normalization for your considerations in the Consideration Tab.

4. Add decisions to your decision makers in the Intelligence Tab.

{

 "$type": "CarlosLab.UtilityIntelligence.UtilityIntelligenceModel",

 "DecisionMakers": [

 {

 "$type": "CarlosLab.UtilityIntelligence.DecisionMakerModel",

 "Id": "6f5616e5-a485-4c3b-9bc4-1eb1f10530fa",

 "Name": "Warrior",

 "Decisions": [

 {

 "$type": "CarlosLab.UtilityIntelligence.DecisionModel",

 "Id": "a36b4f16-d8d0-4069-94ab-925828eb3c7d",

 "Name": "MoveToHealthStation",

 ...

 }

],

 ...

 }

],

 ...

}

{

 "$type": "CarlosLab.UtilityIntelligence.UtilityIntelligenceModel",

 "DecisionMakers": [

 {

 "$type": "CarlosLab.UtilityIntelligence.DecisionMakerModel",

 "Id": "6f5616e5-a485-4c3b-9bc4-1eb1f10530fa",

 "Name": "Warrior",

 ...

 }

],

 "Decisions": [

 {

 "$type": "CarlosLab.UtilityIntelligence.DecisionModel",

 "Id": "a36b4f16-d8d0-4069-94ab-925828eb3c7d",

 "Name": "MoveToHealthStation",

 ...

 }

],

 ...

}

Utility Intelligence - Documentation 124 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 125

Source Code

Input

Add the in keyword before InputContext in the OnGetRawInput function.

v1

v2

InputNormalization

Change InputContext to in InputNormalizationContext in the OnCalculateNormalizedInput function.

v1

v2

protected override int OnGetRawInput(InputContext context)

protected override int OnGetRawInput(in InputContext context)

protected override float OnCalculateNormalizedInput(int rawInput, InputContext context)

protected override float OnCalculateNormalizedInput(int rawInput, in InputNormalizationContext context)

Utility Intelligence - Documentation 125 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 126

Release Notes

Utility Intelligence - Documentation 126 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 127

Release Notes - v1

1.0.11

Changed

Changed GetVariable<TValue>() function of the Blackboard to GetVariable<TVariable>() . Now, you have to pass

variable type instead of value type to the function.

Added

Added GameObjectListVariable and TransformListVariable to store a list of GameObjects and Transforms in

Blackboard.

Fixed

Fixed a bug where the IntelligenceAsset did not save when changing Input to None.

Fixed deserializing failed when a property value was null

Fixed a bug where VariableReferences of Inputs had a null Blackboard at runtime.

1.0.10

Added

Added GetVariable<TValue>() function for the Blackboard. You can use this function to retrieve Blackboard

variables from other places.

Fixed

Fixed an issue that caused MomentumBonus to not work at runtime.

public void TestBlackboard()

{

 var blackboard = characterFacade.Entity.Intelligence.Blackboard;

 var sightRadiusVariable = blackboard.GetVariable<FloatVariable>("SightRadius");

 sightRadiusVariable.Value = 30;

}

public void TestBlackboard()

{

 var blackboard = characterFacade.Entity.Intelligence.Blackboard;

 var sightRadiusVariable = blackboard.GetVariable<float>("SightRadius");

 sightRadiusVariable.Value = 30;

}

Utility Intelligence - Documentation 127 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 128

1.0.9

Changed

In Unity 6, Unity has fixed the bug that prevented DropdownField choices from being nested. Therefore, we’ve

updated our DropdownFields to include nested choices. If you use Unity 6, you will see some DropdownFields

that have nested choices like this:

1.0.8

Changed

Refactored Input and TargetFilter .

[Breaking] Renamed IsLessThanOrEqualValueNormalization s to IsLessThanOrEqualToValueNormalization s

[Breaking] Renamed IsGreaterThanOrEqualValueNormalization s to IsGreaterThanOrEqualToValueNormalization s

Sorry, if you are using IsGreaterThanOrEqualValueNormalization s or IsLessThanOrEqualValueNormalization s, after upgrading

to 1.0.8, you need to edit Intelligence Data to update these class names by using File Toolbar Menu.

Fixed

Fixed an issue where the consideration editor did not update properly when removing an input from InputTab.

1.0.7

Fixed

Fixed an issue where adding multiple target filters did not work

Breaking Changes

Utility Intelligence - Documentation 128 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v1/nested-dropdown.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v1/nested-dropdown.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 129

1.0.6

Added

Added Ids for Views

Fixed

Fixed an issue where list items could be renamed to an empty string.

Fixed an issue where only the selected consideration would update the new input name when renaming an

input.

Fixed issues where only the selected decision would update the new consideration name when renaming a

consideration, and the new target filter name when renaming a target filter.

1.0.5

Changed

Group these classes under the menu: AddComponent/CarlosLab.

UtilityWorldController

UtilityAgentController

UtilityAgentFacade

UtilityEntityController

UtilityEntityFacade

Separate the ChargeStations from Environment prefab in demos.

1.0.4

Added

Added variable classes to store GameObject and Transform.

Fixed

Fixed an issue where custom variables could not be referenced in the Editor.

1.0.3

Added

Added Momentum Bonus to reduce the oscillation between nearly equal decision-target pairs.

Utility Intelligence - Documentation 129 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 130

1.0.2

Added

A toggle to enable/disable Compensation Factor.

Changed

Removed Consideration Benchmarks.

1.0.1

Added

Consideration Benchmarks.

InfluenceCurve Benchmarks.

Changed

Select the first decision maker if all decision makers return a score of 0.

Fixed

Fixed the issue where the state of a decision maker was incorrect when exiting/entering.

Fixed the issue where the Editor did not select the correct decision when adding or removing decision makers,

decisions and considerations.

1.0.0

First release

Utility Intelligence - Documentation 130 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 131

Release Notes - v2

2.2.6

Changed

Updated Documentation.pdf

Fixed

Fixed the issue where decisions without targets were run once per target. Now, they are only run once per

decision-making update.

This update has changed some file names, so you must delete the old packages before upgrading. Check

UpgradeGuide for instructions on how to upgrade.

2.2.4

Changed

Unregistered NormalizedInputChanged in the InputNormalizationItemViewModel because it was unnesssary

Fixed

Fixed a build error caused by including editor-specific code (EnumFlagsField) in the build process.

2.2.3

Changed

Unbound cell items in ListViews.

Fixed

Fixed issue where asset = null when exiting Play Mode and entering Edit Mode

Fixed bug where the Consideration tab wasn’t updating the response curve.

2.2.2

Changed

Added support for Enums with the FlagsAttribute .

Caution

Utility Intelligence - Documentation 131 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 132

Improved capturing of values from input fields (IntegerField , FloatField , Vector3Field , etc.) used for undo/redo

functionality.

2.2.1

Added

Added a new example to demonstrate the Entity Lifecycle. After upgrading, ensure to update the example

scenes to access it.

Added lifecycle event functions to EntityFacade . You can override these functions to receive notifications when

lifecycle events occur.

EntityFacade.OnRegistered()

EntityFacade.OnUnregistered()

EntityFacade.OnActivated()

EntityFacade.OnDeactivated()

EntityFacade.OnEnabled()

EntityFacade.OnDisabled()

EntityFacade.OnDestroyed()

Added support for GameObject.SetActive and GameObject.Destroy . Starting from v2.2.1, you can safely call these

functions outside of action tasks. However, if you need to activate/deactivate/destroy utility entities within

action tasks, you still have to use EntityFacade.SetActive and EntityFacade.Destroy . These functions will be

queued to run after all action tasks have executed.

Added functions that should be used from outside of action tasks. They will be run immediately without

queueing.

EntityController.RegisterImmediate()

EntityController.UnregisterImmediate()

EntityController.SetEnableImmediate()

EntityController.EnableImmediate()

EntityController.DisableImmediate()

EntityFacade.RegisterImmediate()

EntityFacade.UnregisterImmediate()

EntityFacade.SetEnableImmediate()

EntityFacade.EnableImmediate()

EntityFacade.DisableImmediate()

Changed

Group built-in Blackboard variables into categories by using the Category attribute.

Utility Intelligence - Documentation 132 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 133

Fixed

Fixed a build error caused by including editor-specific code in the build process.

2.2.0

This version may break your project, so please back up your project before upgrading. Note that you should delete

the old package folders first.

New Features

Added a Lock Button to the Intelligence Editor to lock the editor window on a specific Utility Agent,

preventing changes when clicking on another Utility Agent or GameObjects.

Added JSON Attributes to rename fields, classes and namespaces in serialized JSON:

ClassFormerlySerializedAs

FieldFormerlySerializedAs

Added Field Attributes to show/hide and group fields in the Intelligence Editor:

ShowIf

HideIf

FoldoutGroup

BoxGroup

Added a Category Field to Inputs, Input Normalizations, Considerations, Target Filters, Decisions, Blackboard

Variables to group them into categories in the Intelligence Editor.

Added

Added the ability to close the Intelligence Editor by pressing the Escape button (Thanks David).

Added the ability to rename list items (Decision Makers, Decisions, Considerations, …) by pressing the F2

button.

Added support for CategoryAttribute in Target Filters and Blackboard Variables.

Changed

Improved UI styles of Inteligence Editor (both Dark theme and Light theme).

Moved CategoryAttribute from namespace CarlosLab.UtilityIntelligence.Attributes to namespace

CarlosLab.Common.Attributes .

Fixed

Breaking Changes

Utility Intelligence - Documentation 133 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 134

New Decision Makers, Decisions, Considerations, etc., cannot be created the first time after creating new

Intelligence Assets.

The Runtime Editor does not display the correct runtime theme.

2.1.1

Fixed

Fixed a bug where the Data Version Not Compatible popup appears when clicking on a newly created Utility

Intelligence Asset in Unity 6

2.1.0

New Features

Add a new feature: Decision Making Batch Processing.

Added

Added these new methods to safely activate/deactive utility entities.

EntityController.SetActive(bool active)

EntityController.Activate()

EntityController.Deactivate()

EntityFacade.SetActive(bool active)

EntityFacade.Activate()

EntityFacade.Deactivate()

Added these new methods to safely enable/disable utility entities.

EntityController.SetEnabled(bool enable)

EntityFacade.SetEnabled(bool enable)

Added these properties to retrieve information about utility entities:

EntityController.IsRegistered

EntityController.IsActive

EntityController.IsEnabled

EntityController.IsDestroyed

EntityFacade.Id

EntityFacade.IsRegistered

EntityFacade.IsEnabled

EntityFacade.IsDestroyed

Utility Intelligence - Documentation 134 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 135

Added EntityFacade.DestroyAfter() to destroy entities with a delay.

Changed

Updated UtilityAgentSpawner example : Increased the map size to spawn hundreds of agents for testing the

decision-making batch processing.

Updated Documentation.pdf to the newest version.

Removed the ability to enable/disable utility entities through GameObject.SetActive() because it is not safe when

called from action tasks. Instead, use EntityController.SetActive() or EntityFacade.SetActive() .

Set the execution order of world controllers to -100 to make it run before all other scripts.

Restricted names of target filters, decision makers, decisions, considerations, inputs, and input normalizations

to allow only letters, numbers, underscores and and a maximum length of 64 characters.

Renamed World.ActiveEntities to World.EnabledEntities

Renamed UtilityWorld.ActiveAgents to UtilityWorld.EnabledAgents

Exposed UtilityWorld.EnabledAgents as a public property

Changed the text of serialized generic types:

2.0.x:

2.1.0:

Fixed

Fixed a bug where enabling/disabling utility entities from action tasks could break the decision-making process

by throwing InvalidOperationException: Collection was modified;

Fixed a bug where disabling an agent did not abort its current decision, causing it to continue running the

decision’s action tasks.

Fixed a bug where VariableReference with an array value type could not be serialized.

Removed

Remove the FrameworkVersion from UtilityIntelligenceModels because it was unnecessary.

Please backup your project before upgrading. This version changes how generic types are serialized. Although it is

automatic, it might still cause unexpected issues for unforeseen reasons.

CarlosLab.Common.VariableReference`1[[System.Int32]]

CarlosLab.Common.VariableReference`1[System.Int32]

Backup your project before upgrading!

Utility Intelligence - Documentation 135 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 136

For those using GameObject.SetActive() to activate/deactivate utility entities, you have to switch to using

EntityController.SetActive() or EntityFacade.SetActive() instead to safely activate/deactivate utility entities.

2.0.4

Added

Added ScriptableObjectVariable and ScriptableObjectListVariable to store ScriptableObjects in Blackboard.

Improved

Improved TargetFilters’ performance.

Changed

Disabled clearing of the Utility Intelligence Editor when selecting a non-agent GameObject.

Fixed

Fixed a bug where the current decision does not break its current action to switch to the best decision when

the “Keep Running Until Finished” option is not ticked.

2.0.3

Added

Added a bunch of new basic inputs that retrieve values from Blackboard:

BasicInputInt

BasicInputBool

BasicInputFloat

BasicInputDouble

BasicInputLong

BasicInputVector2

BasicInputVector3

BasicInputVector2Int

Note

Utility Intelligence - Documentation 136 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 137

BasicInputVector3Int

Added a PDF version of the documentation, so you can now read it offline without needing an internet

connection.

Utility Intelligence - Documentation 137 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/basic-inputs.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/basic-inputs.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 138

Utility Intelligence: Documentation - PDF (v2) | Utility AI Framework for Unity Utility Intelligence: Documentation - PDF (v2) | Utility AI Framework for Unity ……

Fixed

Fixed a bug where the framework could not deserialize inputs if their values types were changed, such as from

Input<bool> to Input<float> .

2.0.2

Fixed

Fixed bug where the File Menu Toolbar could not be used because the Data Version is Not Compatible popup

showed repeatedly if the data version of Utility Intelligence Assets was older than the framework.

Fixed NullReferenceException that occurred when agents made decisions at runtime if the decision list of

decision makers was empty.

Fixed NullReferenceException that occured when using the File Menu Toolbar without selecting a Utility

Intelligence Asset.

Removed

Removed the FrameworkVersion from Utility Intelligence Assets because it was unnecessary.

2.0.1

Fixed

Utility Intelligence - Documentation 138 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.youtube.com/watch?v=NtkYrrIC_Uw
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 139

Fixed a bug where removing a consideration in the ConsiderationTab did not clear the ConsiderationView in

the IntelligenceTab and caused a NullReferenceException in InputNormalizationViewIntelligenceTab and

InputValueViewIntelligenceTab when trying to access the removed consideration view model.

Fixed a bug where removing in the DecisionTab did not clear the ActionTaskView in the IntelligenceTab

2.0.0

Starting with v2, this plugin has been moved from the Assets folder to the Packages folder to manage

dependencies and track versions more easily.

To upgrade from v1 to v2, please read the Upgrade Guide.

New Features

Add a new feature: Runtime Editor

Added

Added a lot of new ExampleScenes.

Added two new tabs to the Intelligence Editor: Decision Tab and Input Normalization Tab

Added HasNoTarget and EnableCachePerTarget toggles for decisions, considerations, input normalizations

and inputs to enable caching of their calculated results, thereby eliminating unnecessary recalculations.

Supported serializing LayerMask. Starting from v2, you can edit all LayerMask fields in the Utility Intelligence

Editor, and all the changes will be serialized to JSON and saved to Utility Intelligene Asset.

Added NavMeshAgentVariable and AnimatorVariable to store NavMeshAgent and Animator in Blackboard

Added CategoryAttribute to categorize the action tasks, inputs and input normalizations.

Added Blackboard.TryGetVariable()

Added these new methods to safely Enable/Disable utility entities.

Note

Utility Intelligence - Documentation 139 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/serialize-layer-mask.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/serialize-layer-mask.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 140

EntityController.Enable()

EntityController.Disable()

EntityFacade.Enable()

EntityFacade.Disable()

Add some new target properties to the action tasks:

TargetFacade

TargetAgent

TargetEntity

TargetTransform

TargetGameObject

Added a lot of new classes to the built-in library:

Action Tasks

Animator

SetBool

SetFloat

SetInteger

SetTrigger

WaitUntilAnimationFinished

NavMeshAgent

ChaseTarget

MoveAwayFromTarget

Patrol

FaceTarget

FaceTargetForever

StartCooldown

Inputs

CooldownElapsedTimeInput

RaycastToTargetInput

Input Normalizations

IsInCooldownNormalization

Added DecisionInfo prefab to show which decision has been chosen.

Improved

Utility Intelligence - Documentation 140 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 141

Improved performance when calling Unity Event Functions in action tasks. Previously, they were called for all

the action tasks across all decisions. Currently, we only call them for the action tasks of the chosen decision.

LateUpdate

FixedUpdate

OnCollisionEnter

OnCollisionStay

OnCollisionExit

…

Categorize the inputs, input normalizations based on its input value type and CategoryAttribute . Note that the

CategoryAttribute will take priority.

Utility Intelligence - Documentation 141 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/input-normalization-categories.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/input-normalization-categories.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 142

Categorize the action tasks based on its CategoryAttribute .

Auto save the widths of the panes in the Utility Intelligene Editor after they have been resized.

Changed

The Momentum Bonus is no longer fixed at 25%. Now, you can adjust it as desired.

Renamed

Utility Intelligence - Documentation 142 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/action-tasks-categories.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/ReleaseNotes/v2/action-tasks-categories.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/momentum-bonus.png
http://127.0.0.1:8000/Attachments/UtilityIntelligence/Documentation/UtilityIntelligence/Decisions/momentum-bonus.png
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 143

NavMeshMoveTowards to MoveToTarget

MyDistanceToTargetInput to DistanceToTargetInput

MoveTowards to MoveTowardsTarget

Serialization: When changing type of properties in Inputs, InputNormalizations, ActionTasks and TargetFilters,

their values will be reset to the default value of their types.

Disable Runtime Editing of Decisions, Considerations for safety purposes, as they are prone to errors.

Disable preview of consideration info when it is discarded in Editor mode.

Fixed

Fixed a bug where the UtilityIntelligenceEditor did not clear the view when exiting Runtime Mode

Fixed a bug where renaming a consideration in the Consideration Tab did not update the new consideration

name in Decision Tab and Intelligence Tab.

Fixed a bug where renaming a target filter in the Target Filter Tab did not update the new target filter name in

Decision Tab and Intelligence Tab.

Fixed a bug where renaming and removing a Blackboard variable in the Blackboard Tab did not update the

variable references in inputs, input normalizations, target filters and decision tasks.

Fixed a bug where we cannot undo or redo the ActionExecuteMode after it has been changed.

Fixed the delay when transitioning between decisions and action tasks when they are running in sequence.

Utility Intelligence - Documentation 143 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 144

FAQs

Utility Intelligence - Documentation 144 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 145

FAQs

Why use Utility Intelligence

I created a page to explain the benefits of using Utility Intelligence over other tools on the market. You can

check it out here: Why Use Utility Intelligence?

Which Unity version is supported?

Utility Intelligence is designed for Unity 6 and later. It uses the UIToolkit Runtime Binding System introduced

in Unity 6 to build the Intelligence Editor using the MVVM pattern, which allows it to function not only in the

Editor but also at runtime in builds. Therefore, Unity 6 and higher is required.

How to get support?

Currently, there are 3 ways to get support:

1. Official Support

Join my community and post your questions there: Join Us On Discord.

This requires you to verify your InvoiceNumber (OrderId) first to gain access to the private channels.

This is the recommended way to get support because:

You can find instant answers to your questions by searching through old posts if someone has already

asked the same questions as you.

Your questions also help others, as they won’t need to ask the same questions again.

You will get faster answers than by sending support requests via email.

Send an email to support@carloslab-ai.com, and don’t forget to include your Invoice Number (OrderId).

Only use this if you really don’t like using Discord.

2. Community Support

If you don’t want to wait for offcial support, you can ask for support from the community. You can post

your questions on:

Unity Discussions: Utility Intelligence: A Robust And Powerful Utility AI Framework.

The community-support channel in our Discord server.

Why you should join our community on Discord

Utility Intelligence - Documentation 145 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://www.youtube.com/watch?v=C6oSn0DkdXg
https://discord.gg/vRFEK5uE3f
mailto:support@carloslab-ai.com
https://discussions.unity.com/t/released-utility-intelligence-a-user-friendly-utility-ai-framework/940124/
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 146

We have a dedicated channel for sharing knowledge about using Utility Intelligence (knowledge-base), where

you can both share and learn from others in our community.

Additionally, I will add all valuable content in the channel to our documentation. This will give your AI

Assistant a more extensive knowledge base about Utility Intelligence, making it smarter. This benefits

everyone.

We have a dedicated channel for receiving feedback from users, where you can send feedback to us. If it is

reasonable and within our capabilities, we’ll make improvements to our framework based on your suggestions.

You can ask for support either from us (official) or from the community.

You can find instant answers to your questions by searching through old posts, without having to wait for

support.

You will get faster responses than by asking via email.

Utility Intelligence - Documentation 146 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 147

Why use Utility Intelligence?

High-quaility documentation

The documentation is written with care and is regularly improved to help you learn Utility Intelligence as easily

as possible.

Besides the online version, we also have a PDF version for offline reading. You can feed it to any AI chatbot, and

then ask it any questions you have about Utility Intelligence.

-> No more struggling with low-quality documentation that makes you feel frustrated and wastes your time.

Online: https://utilityintelligence.carloslab-ai.com/Documentation/

Offline: https://utilityintelligence.carloslab-ai.com/assets/Documentation/Documentation.pdf

I created this video to show you how to learn Utility Intelligence with DeepSeek. I like it because its deep

thinking mode is incredible. If you don’t like DeepSeek, you can use any other AI chatbot you prefer.

But don’t forget to share your knowledge about Utility Intelligence in the channel: knowledge-base on our

Discord server. I will select the most valuable content to include in our documentation. This will give your AI

Assistant a larger knowledge base and be smarter.

Learning Utility Intelligence With DeepSeekLearning Utility Intelligence With DeepSeek

Utility AI is better than Behavior Trees and Finite State Machines

Utility Intelligence - Documentation 147 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/
https://utilityintelligence.carloslab-ai.com/assets/Documentation/Documentation.pdf
https://www.youtube.com/watch?v=iU1p2Y478mY
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 148

I’ve written an article to explain why Utility AI is better than Behavior Trees and Finite State Machines for

creating game AIs, you can read it here: Why use Utility AI instead of Behavior Trees and Finite State Machines to

create AIs for your games.

Easy to debug

If you use Behavior Trees or Finite State Machines as your decision-making solution, you might find it hard to

debug why your agents make wrong decisions at runtime as complexity increases.

With Utility Intelligence, you can preview which decision is chosen by modifying input values, such as health,

energy, distance to target, and attack cooldown, directly in the Editor, without having to play the game.

Feature: Status Preview (v2)Feature: Status Preview (v2)

Easy to maintain and scale

if you use Behavior Trees or Finite State Machines for decision-making, the cost of maintaining the behavioral

structure will increase as the complexity of AI Behaviors increases. It is because the temporal coupling between

decisions.

In Utility Intelligence, we use Utility AI for decision-making, which means decisions are made based on their

scores. Therefore, there is no coupling between decisions, and they are independent of each other.

-> It’s easy to add, remove and change decisions, as well as adjust decision-making by tweaking the decision

scores, without worrying about causing significant changes to the behavioral structure, as in Behavior Trees

and Finite State Machines.

-> This ensures that your AI system remains manageable and scalable as its complexity increases.

Utility Intelligence - Documentation 148 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/
https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#hard-to-debug
https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#hard-to-debug
https://www.youtube.com/watch?v=N2QVn5GaklA
https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#temporal-coupling-between-decisions
https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#temporal-coupling-between-decisions
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 149

Boost team productivity

Since decisions are made based on their scores, designers can adjust decision-making by tweaking the decision

scores, without needing support from developers to change the behavioral structure, as required in Behavior

Trees and Finite State Machines.

-> Designers and developers can work independently without affecting each other.

Designers: Focus on adjusting the decision scores to ensure the best decision is chosen in any situation.

Developers: Focus on creating and executing new decisions based on the game design document.

Higher Performance

Utility AI allows us separate decision-making from decision-execution, turn them into two distinct processes,

and run each process at a different frequency.

For example, we can run the decision-execution process every frame while running the decision-making process

only every 0.1s or every 0.5s by adjusting the decision-making interval to suit your game’s needs.

Moreover, you can even distribute the decision-making process across multiple frames to balance the workload, or

manually run the decision-making process when necessary. This approach significantly improves your game’s

performance.

This is difficult to achieve if you use Behavior Trees (Finite State Machines) because decision-making is closely

tied to decision-execution by nature in these systems and it’s hard to separate.

An intuitive and powerful Editor

We offer an intuitive and powerful Editor with many robust features that allow you to create complex AI

Behaviors and Logic with ease:

Status Preview: Preview the score of each decision and which decision is chosen based on the input values and

response curves directly in the Editor, without having to play the game.

Consideration Editor: See how the input and the response curve will affect the consideration score without

having to visualize it in your head.

JSON Editing: Manually edit the Intelligence Data in JSON format using your Text Editor then import it to the

Intelligence Asset

Runtime Status: View the current status of multiple components during runtime. It is similar to Status

Preview but includes additional runtime information, such as the best target for each decision, and the current

status of considerations and action tasks.

Runtime Editing: Tweak your AI Behaviors during runtime for testing purposes without having to replay the

game.

Runtime Editor: The Utility Intelligence Editor can function both at editor time and at runtime in builds.

This feature enables users to adjust variables in the Utility Intelligence Editor to observe how they affect the

Utility Intelligence - Documentation 149 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#decision-making-is-forced-to-run-at-the-same-frequency-as-decision-execution
https://blog.carloslab-ai.com/Articles/BehaviorAI/WhyUseUtilityAI/#decision-making-is-forced-to-run-at-the-same-frequency-as-decision-execution
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 150

agent’s decisions for testing purposes in builds.

Lockable Editor: Lock the Intelligence Editor on a specific Utility Agent, allowing users to modify variables

from other Game Objects through the Inspector Window and see how they affect the decision scores in the

Intelligence Editor.

Field Attributes: Show/hide and group your fields in the Intelligence Editor.

Dark & Light themes: The Utility Intelligence Editor supports both Dark and Light themes and will

automatically match the theme of the Unity Editor.

Many example scenes

We offer many example scenes to show you how to use Utility Intelligence to create AIs for your games:

StraightArrowOnly

StraightArrow vs CurvedArrow

Chaser vs Evader

Chaser & Patrol vs Evader & FindEnemy

Swordsman vs Swordsman

Axeman vs Axeman

Archer vs Swordsman

Crossbowman vs Swordsman

Team vs Team

Runtime Editor

Many built-in components

We offer many built-in components to help you create game AIs more easily and quickly, saving you a significant

amount of time:

Built-in Inputs

Built-in Input Normalizations

Built-in Action Tasks

Built-in Target Filters

Built-in Blackboard Variables

Many optimization tricks

We offer many optimization tricks to help you discard unnecessary calculations and improve your AI’s

performance:

Utility Intelligence - Documentation 150 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 151

Discard considerations if the decision cannot possibly beat the other ones.

Discard decisions, decision makers if they cannot possibly beat the other ones.

Cache the calculated results from inputs, input normalization, considerations, decisions and reuse them in

other places.

Adjust the decision-making interval, such as 0.1s or 0.5s, depending on your game’s needs.

Distribute the decision-making task across multiple frames to balance the workload, reduce computational

burden per frame, and avoid performance spikes.

Many oscillation reduction tricks

We offer many oscillation reduction tricks to minimize the oscillation between decisions:

Momentum Bonus

Decision Weight

Keep running the decision tasks until they are finished

Utility Intelligence - Documentation 151 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://utilityintelligence.carloslab-ai.com/Documentation/

Page 152

Special Thanks

This framework is inspired by these projects:

1. Infinite Axis Utility System (Dave Mark). For more information about it, you can watch his presentations

here.

2. Curvature (Mike Lewis)

Special thanks to Dave Mark, and Mike Lewis for their inspiring work.

Third Party Notices

Framework

This framework uses some components from the following projects:

1. Curvature (Mike Lewis)

- Component: ResponseCurve.cs

- Url: https://github.com/apoch/curvature/

- License: BSD-3

2. Trove (PhilSA)

- Component: CurveDrawerElement.cs

- Url: https://github.com/PhilSA/Trove/

- License: MIT

Many thanks to Mike Lewis, and PhilSA for creating these excellent tools.

Example Scenes

This package uses the following assets to create example scenes:

1. KayKit - Character Pack : Adventurers (Kay Lousberg)

- Url: https://kaylousberg.itch.io/kaykit-adventurers

- License Type: CCO

2. KayKit - Dungeon Remastered Pack (Kay Lousberg)

- Url: https://kaylousberg.itch.io/kaykit-dungeon-remastered

- License Type: CCO

3. KayKit - Character Pack : Skeletons (Kay Lousberg)

- Url: https://kaylousberg.itch.io/kaykit-skeletons

- License Type: CCO

4. KayKit - Mini Game Variety Pack (Kay Lousberg)

- Url: https://kaylousberg.itch.io/kay-kit-mini-game-variety-pack

Utility Intelligence - Documentation 152 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://github.com/apoch/curvature
https://github.com/apoch/curvature/
https://github.com/PhilSA/Trove/
https://kaylousberg.itch.io/kaykit-adventurers
https://kaylousberg.itch.io/kaykit-dungeon-remastered
https://kaylousberg.itch.io/kaykit-skeletons
https://kaylousberg.itch.io/kay-kit-mini-game-variety-pack
https://utilityintelligence.carloslab-ai.com/Documentation/

Page 153

- License Type: CCO

5. RPG Audio (Kenney)

- Url: https://kenney.nl/assets/rpg-audio

- License Type: CCO

6. Impact Sounds (Kenney)

- Url: https://kenney.nl/assets/impact-sounds

- License Type: CCO

7. 3D Game Kit (Unity)

- Component: Audios

- Url: https://assetstore.unity.com/packages/templates/tutorials/unity-learn-3d-game-kit-115747

- License Type: Unity Companion License

8. Dragon Crashers (Unity)

- Component: Audios

- Url: https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-urp-2d-sample-

project-190721

- License Type: Unity Companion License

Many thanks to Kay Lousberg, Kenny, and the Unity Asset Team for creating these excellent assets.

Utility Intelligence - Documentation 153 / 153

Utility Intelligence: A Robust And Powerful Utility AI Framework

https://kenney.nl/assets/rpg-audio
https://kenney.nl/assets/impact-sounds
https://assetstore.unity.com/packages/templates/tutorials/unity-learn-3d-game-kit-115747
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-urp-2d-sample-project-190721
https://assetstore.unity.com/packages/essentials/tutorial-projects/dragon-crashers-urp-2d-sample-project-190721
https://utilityintelligence.carloslab-ai.com/Documentation/

